東海大學環境科學系碩士班

碩士論文

以 DMPS 作為複合劑及使用石墨式原子吸光法測定 魚肉中總汞之研究

Determination of Total Mercury in Fish by Graphite-Furnace Atomic Absorption Spectrophotometry Using 2,3-Dimercaptopropane-1-sulfonate (DMPS) as a Complexing Agent

研究生:林芳儀 指導教授:郭茂松 博士

中華民國九十四年七月

摘要

本研究秤取 10 mg 已經乾燥的魚肉樣品粉末,放入 7 mL 鐵氟 龍瓶中,先加入 500 µL 濃硝酸,進行第一段之微波消化(85°C,10 分鐘),再加入 100 µL 過氧化氫,進行第二階段之微波消化(85°C, 10 分鐘),將魚肉中的總汞萃出。以氫氧化鈉溶液(1 <u>N</u>)調整消化混 合物之 pH 值至 5 - 6,然後,加入醋酸鈉緩衝溶液(1 mmol)及複合 劑(DMPS,1.2x10⁻³ <u>M</u> 500 µL),與汞反應約 1 小時使生成汞-DMPS 之複合物,然後流經兩個自製串聯之 C₁₈ cartridge,使汞-DMPS 的複合物滯留於 C₁₈ cartridge 上。每個 cartridge 各用甲醇洗出複 合物,並定量至 0.50 mL。取出部份(50 µL)注入石墨式原子吸光儀 (GFAAS),測定汞的含量。

使用本方法测得三種魚肉參考標準樣品 NRC TORT-2 【certified value 270 ± 60 (ng/g)】之值為 270 ± 4 (ng/g); NRC DLOT-3【certified value 3370 ± 140 (ng/g)】經稀釋 5 倍後,测得 魚肉中汞的含量為 6.74 ± 0.04 ng,換算為濃度後,相當於 3370 ± 20 (ng/g); NRC DORM-2【certified value 4640 ± 260 (ng/g)】經 稀釋 10 倍後,測得魚肉中汞的含量為 4.60 ± 0.11 ng,換算為濃度 後,相當於 4600 ± 110 (ng/g),表示本方法的準確度良好,添加回 收率為 96.7 - 102.2%。本方法偵測極限(MDL, 30)之絕對量為 0.22 ng Hg,相當於濃度為 22 (ng/g) Hg,線性可達 1350 (ng/g)。

Abstract

In this thesis, an amount (10 mg) of dried fish sample was placed in a 7-mL teflon microreaction vessel. Two-stages of microwave digestion (500 µL of nitric acid and then 100 µL of hydrogen peroxide) were performed at 85°C for 10 min. After cooling to room temperature, the pH of the acidic fish mixture was adjusted to 5 - 6 by NaOH. Appropriate amounts of 2,3-dimercaptopropane-1-sulfonate (DMPS, 500 µL) and sodium acetate buffer (pH=6.0, 1 mmol) were added to the mixture to form a mercury-DMPS complex. The complex was preconcentrated on two home-made C₁₈ cartridges in series, and then each cartridge was eluted with methanol and adjusted to 0.50 mL. A portion (50 μ L) was introduced into a graphite cuvette and then measured by GFAAS (λ =253.7 nm). The peak heights in absorbance were used for a quantitative analysis.

The observed values $[270 \pm 4 \text{ (ng/g)}, 3370 \pm 20 \text{ (ng/g)}, \text{ and} 4600 \pm 110 \text{ (ng/g)}]$ of total Hg in three fish certified reference materials (NRC TORT-2, NRC DOLT-3, NRC DORM-2) were in good agreement with the certified values $[270 \pm 60 \text{ (ng/g)}, 3370 \pm 140 \text{ (ng/g)}, \text{ and } 4640 \pm 260 \text{ (ng/g)}$ Hg, respectively]. The method detection limit (MDL, 3σ) for Hg was found to be 22 (ng/g); the calibration graph was linear up to 1350 (ng/g). Recoveries of 96.7 - 102.2% were obtained by spiking known amounts of mercury to the three CRM fish samples.

總目錄

i	ョ要	摘
iii	1日:	總
vii	目	表
viii]目	圖

第一章 前言

一、環境中的汞	1
二、魚肉中汞的相關規範	2
三、石墨式原子吸收光譜儀的基本原理	3
1. 中空陰極燈管	4
2. Zeeman 背景校正系統	4
3. 基質修飾劑	6
4. 合適加溫程式	6
(1) 乾燥	6
(2) 灰化	6
(3) 原子化	7
(4) 清除	7
四、適當的前處理步驟	7
1. 微波消化	8
2. 固相萃取	8
五、選用 2,3-dimercaptopropane-1- sulfonate(DMPS)	
作為汞離子的複合劑	9

÷.	、研究日	的旗方法	既沭	·	11	ſ
<i>/</i>	~~ 7 <u></u> 7 <u></u> 1	いケクム				۰.

第二章 文獻回顧

- 一、魚肉中汞的分析方法.....12
 - 1. 魚肉中總汞的測定方法12
 - 2. 魚肉中甲基汞的測定方法......14
- 二、以石墨式原子吸收光譜法測定汞曾使用的基質修飾劑......19

三、DMPS 與汞形成複合物的可能結構.......20

第三章 儀器與藥品

一、儀器設備及材料	22
二、藥品與試劑	26
三、玻璃器皿之清洗	29
四、實驗步驟	29
1. 藥品和溶液之配製	29
2. 預濃縮 C ₁₈ cartridge 之製備	31
3. 魚肉樣品之前處理、保存及	
添加已知量的汞於魚肉中之配製	31
4. 魚肉中總汞的測定步驟	32
5. 檢量線之配製	35
(1) 直接將汞配製在甲醇中之檢量線	35
(2) 使用標準添加法及經微波消化的方式	35
6. 魚肉中汞經 C ₁₈ cartridge 之固相濃縮步驟	36
7. 石墨式原子吸光儀之設定條件	

及魚肉樣品之定量分析	40
------------	----

第四章 結果與討論

一、微波消化條件之建立	43
1. 酸液種類之選擇	.43
2. 酸液用量之選擇	.44
3. 微波消化時間及溫度之選擇	.47
二、分析條件之建立	52
1. 醋酸鈉緩衝溶液(pH=6.0)用量之選擇	52
2. DMPS 複合劑用量之選擇	53
3. 使用 C ₁₈ cartridge 作為固相濃縮萃取時填充量之選擇	.54
三、石墨式原子吸光儀加溫程式之探討	.56
1. 灰化步驟之探討	57
2. 原子化步驟之探討	59
四、分析結果之探討	61
1.總汞之檢量線建立	61
2.準確度測試	.65
3.回收率之测試	68
4.方法偵測極限之測定	71
第五章 結論與建議	76

參考文獻	7	8
------	---	---

附錄一	自然界中汞的循環
附錄二	使用直接將汞配製在甲醇之檢量線求得魚肉標準參考樣品中
	總汞之含量
附錄三	求魚肉標準參考樣品(NRC TORT-2)方法偵測極限(Method
	Detection Limit, MDL)值之範例89

表目錄

儀測定汞之加溫程式	3-1. 使用石墨式原子吸	表 3-1.
儀測定汞之設定條件40	3-2. 使用石墨式原子吸	表 3-2.
甲醇中之檢量線62	表 4-1. 直接將無機汞配專	表 4
甲醇中之檢量線62	4-2. 直接將甲基汞配製	表 4-2.
量線及由外插法求得 TORT-2 魚肉中總	4-3. 使用標準添加法之	表 4-3.
63	汞的含量	
	4-4. 本方法準確度測試	表 4-4.
0.0 ng)於魚肉標準參考樣品(TORT-2)	4-5. 添加無機汞(2.70	表 4-5
收率69	中,測試本方法之	
)於魚肉標準參考樣品(DOLT-3)中,測試	4-6. 添加無機汞(34.0	表 4-6.
	本方法之回收率.	
於魚肉標準參考樣品(DORM-2)中,測試	4-7. 添加無機汞(46.0 r	表 4-7.
71	本方法之回收率.	
樣品中汞之 MDL 值74	4-8. 使用本方法求得魚	表 4-8.
直與其他文獻值之比較75	4-9. 本方法所得之 MD	表 4-9.

圖目錄

圖	1-1.	中空陰極燈管之構造圖	4
圖	1-2.	以 Zeeman 效應為基礎作為原子吸收光譜的背景校正系約	充5
圖	1-3.	2,3-Dimercaptopropane-1-sulfonate (DMPS)之結構式	.10
圖	2-1.	改變 DMPS 的用量對回收 50 ng 總汞的情形	.21
圖	3-1.	微量樣品鐵氟龍消化瓶	.23
圖	3-2.	預濃縮 C ₁₈ cartridge 之製備	.31
圖	3-3.	鐵氟龍消化瓶鎖瓶工具圖	.34
圖	3-4.	汞-DMPS 之水溶液流經兩個串聯 C ₁₈ cartridge 之圖形	.38
圖	4-1.	微波消化酸液的種類對測定魚肉中汞吸光度之影響	.44
圖	4-2.	硝酸用量對測定魚肉中汞吸光度之影響	.45
圖	4-3.	過氧化氫用量對測定魚肉中汞吸光度之影響	.47
圖	4-4.	一階段微波消化及二階段微波消化对测定鱼肉中汞吸光度	きえ
		影響	.48
圖	4-5.	微波消化温度對測定魚肉中汞吸光度之影響	.50
圖	4-6.	微波消化時間對測定魚肉中汞吸光度之影響	.51
圖	4-7.	醋酸鈉緩衝溶液之用量對測定魚肉中汞吸光度之影響	.53
圖	4-8.	DMPS 複合劑用量對測定魚肉中汞吸光度之影響	.54
圖	4-9.	C ₁₈ cartridge 之填充量對測定魚肉中汞吸光度之影響	56
圖	4-1(D. 灰化温度對測定魚肉中汞吸光度之影響	.58
圖	4-11	1. 灰化時間對測定魚肉中汞吸光度之影響	.58
圖	4-12	2. 原子化温度對測定魚肉中汞吸光度之影響	.60
圖	4-13	3. 原子化時間對測定魚肉中汞吸光度之影響	.60
圖	4-14	4. (a)直接將 Hg ²⁺ 配製於甲醇中之檢量線與(b)使用標準添加	口法

viii

基參考樣品(TORT-2)中,經實驗步驟所	將 Hg ²⁺ 加入魚肉材	
64	得之檢量線	
记製於甲醇中之檢量線與(b)使用標準添	围 4-15. (a)直接將 CH ₃ Hg	圖
標準參考樣品(TORT-2) 中,經實驗步	加法將 Hg ²⁺ 加入魚	
64	驟所得之檢量線	

第一章 前言

一、環境中的汞

汞,俗稱水銀,化學元素為 Hg,原子量 200.59,氧化價數有 0、 +1、+2,在常溫常壓下是唯一為液態的金屬。沸點(boiling point)約為 356℃;熔點(melting point)約為-39℃;密度為 13.55 g/mL@ 20℃。蒸氣壓(vapor pressure)大約為 1.6×10⁻⁴ KPa @ 20℃^[1],即具 有高揮發性。容易與一些金屬元素如銅、金等形成汞齊合金 (amalgam)。

自然環境是一個開放循環系統,各種型式之汞物種會在大氣、水 體、土壤、底泥及生物體之間轉換與流動,如附錄一所示^[2]。在自然 界中,汞的濃度不高但分佈卻很廣,如:地殼中約含有 80 ppb(ng/g)^[3];大氣中的汞,以大都市為例,約為5-50 ng/m^{3[4]};一 般的淡水水域,約為20-60 ng/L^[5];海水中約有 10-30 ng/L^[6];一 般土壤中約為10-300 ppb(ng/g)^[5,6]。

人類很早就知道汞具有毒性。十九世紀以後,隨著工業的發展, 汞的用途愈廣,生產量遽增,由於人類的活動使得大量的汞進入環境 中。環境中汞的來源大致可分為自然逸散與人為排放^[7],自然逸散全 球每年約有 2500 頓;人為排放約有 3500 頓^[8]。自然界地殼中含有汞 (約 80 ng/g)^[3],因此自然逸散主要來自含汞岩層受風化與火山地熱氣 體之逸散;人為排放大致可分為人們的日常生活(如使用含汞的日光 燈、水銀電池)、實驗藥品(含汞試劑或溫度計)、工廠製造產品【如鹼 氯工廠、含汞之農藥、殺菌劑(fungicides)】、燃煤【因煤碳中約含有 0.1 - 0.2 µg/g Hg】^[3,9,10]火力發電廠之排煙及飛灰等排至大氣中、落 到土壤中,或經由下雨,流到河川、水庫、或流至河海交叉口,或到 大海中。無論是自然逸散或人為排放,最終的承受體即是大地與海洋。

一般而言汞進入人體後,將與體內細胞(-SH group)結合,而影響 人們的腎臟、傷害神經系統、引起麻痺、染色體異常分裂或甚至畸形 兒童^[3,11]。自然界中汞大致可區分為三種物種:元素汞、無機汞和有 機汞。各物種對人體毒害的程度也不同,其毒性大小依序為:有機汞 >元素汞>無機汞^[12]。有機汞因有較高的脂溶性,會累積在人體內, 傷害中樞神經系統^[3,13-17];元素汞蒸氣在進入人體後,可穿透細胞膜, 擴散到腦部的血管進而危害大腦,引起慢性神經病症狀;無機汞則危 害腎臟和免疫系統^[1,3,11,17,18]。

在自然界的食物鏈中,河海中的魚貝類生物會吸食底泥,可能將 底泥中的無機汞和有機汞吃入。在底泥中,無機汞可被微生物細菌轉 化為甲基汞^[19-21]或其他的有機汞,而被累積在魚類的脂肪和肝臟 ^[22-24]。由於甲基汞是親油脂性,進入魚類之後,可能會累積(約 100 至 10⁷ 倍)於魚體中^[22-24];或當無機汞經由魚鰓呼吸器官或到達內臟 時,將被轉為有機汞^[25]。在魚體中的有機汞大都以甲基汞為主,因乙 基汞和苯基汞在魚肉中的濃度很低,可以忽略不計^[26-28]。魚體被人們 食用,無機汞及甲基汞將轉到人們體內,對人們造成傷害^[29,30]。

二、魚肉中汞的相關規範

在未受污染的自然水體,魚肉中總汞的濃度約為 10-500 ng/g Hg,其中甲基汞的濃度通常小於 300 ng/g^[31],約佔魚肉中總汞濃度 之 80 - 95%^{[13,31-34]。}為了維護人們的健康,各國對於魚肉中汞的可 許濃度都有限值。例如:美國^[12,29,35](US Food and Drug Administration)在 1974 年規定可被吃的魚肉部分(edible portion)和

2

海產食品(sea food)中,含有甲基汞(或總汞)的濃度應<1000 ng/g by wet weight;英國^[36]]、澳洲^[37]、加拿大^[29,31]和台灣則建議魚類和魚製品中總汞的濃度應<500 ng/g;日本^[12]更建議魚肉中汞的濃度需 ≤300 ng/g,才能供給人們食用。

三、石墨式原子吸收光譜儀(graphite-furnace atomic absorption spectrophotometry, GFAAS)的基本原 理

GFAAS 主要是用來測定溶液中重金屬的濃度,通常可達µg/L, 即 ppb 的程度。其操作方法為將已前處理妥之樣品,取適量(10-50 µL)注入石墨管內,藉著電流加熱的方式使石墨管持續升溫,經加溫 程式的四個步驟:乾燥(drying,將樣品中的水分和溶劑蒸發,在本實 驗中是以甲醇為溶劑)、灰化(ashing,盡量移除樣品中可被揮發的有 機物質或樣品基質)、原子化(atomization,提供一較高的溫度,使待 測金屬由化合物分解為原子蒸氣(atomic vapor),測定其吸光度,作 為定量之用)和清除(cleaning,提供一更高的溫度,維持數秒,將殘 留在石墨管內的雜質盡量移除)之後,使用氫氣和冷卻水在40秒內, 將石墨管冷卻至室溫,即可再注入樣品。

若樣品基質不複雜時,通常可省略消化之前處理步驟,而直接將 樣品注入石墨管內分析;但若樣品基質複雜時,則常產生基質的干擾 問題。基質干擾大致分為兩種類型:即光譜干擾與化學干擾。產生光 譜干擾的原因有二,其一是干擾物與待測物在原子化時的吸收波長相 近,使得偵測器無法解析辨別。另外是金屬化合物在灰化時,未能將 樣品基質分解完全,因此,在原子化時,樣品基質隨著待測金屬之原 子蒸氣一同被偵測器測得,造成正干擾。通常藉由添加適量的基質修 節劑或合適的加溫程式來降低基質的干擾,或使用 Zeeman 背景校正 器來校正其背景值。至於化學干擾,則是待測物在原子化時受到化學 反應而干擾其測定值,通常可使用合適的加溫程式或是添加適當的基 質修飾劑來降低干擾。

1. 中空陰極燈管(hollow cathode lamp, H.C.L.)

中空陰極燈管是原子吸收光譜儀測定重金屬時最常使用的光源 之一,如圖 1-1 所示,此燈管包含鎬(tungsten)陽極和圓柱形的中空 陰極,燈管內充滿 1-5 torr 之氖氣(neon)或氩氣(argon),且陰極上 鍍有待測元素之金屬,本實驗所用的汞中空陰極燈管是填充氖氣。當 兩電極間施以 300 伏特的電壓時,氖氣被離子化,當電壓足夠大時, 氖離子(Ne⁺)可以得到足夠的動能而撞擊陰極表面的金屬原子,產生 電子雲,此種過程稱為濺射(sputtering),一部份被濺射的金屬原子處 於激發態,當其回到基態時放出特定波長的能量,作為測定 Hg⁰原子 吸光儀的光源^[38]。

圖 1-1 中空陰極燈管之構造圖^[38]

2. Zeeman 背景校正系統(Zeeman background correction)

當原子蒸氣暴露在一強磁場(0.1 至 1 tesla)時,原子的電子能階

將會被分裂,導致每個電子躍遷形成數個吸收光譜線,這些吸收光譜 線的差異約在 0.01 nm,而其總吸光度與分裂前的原始吸收光譜線相 等,這種現象稱為 Zeeman 效應(Zeeman effect),對原子光譜而言 是很常見的。在原子吸收光源的過程中,按照電子躍遷的型態有數種 分裂的形式,最簡單的分裂圖形是單一態躍遷(singlet transitions), 有一中央(π)譜線和二條等間隔的附屬σ譜線,中央譜線位於原始波長 上,其吸光度為σ譜線的兩倍。更複雜的躍遷時,則π譜線和σ譜線將 產生更多的分裂譜線。

Zeeman 效應應用於原子吸光儀是基於兩種不同型態的吸收 峰,其中π波峰只吸收與外加磁場呈平行的極化輻射,而o波峰僅吸收 與外加磁場呈垂直的極化輻射,此吸光度通常很小或可忽略不計。圖 1-2 顯示利用 Zeeman 效應作為背景校正的石墨式原子吸收光譜儀, 來自中空陰極燈管未極化的光源通過一旋轉的極化器 (rotating polarizer),將光源分成與磁場呈平行和垂直的兩平面極化光。當與磁 場呈平行方向的光源通過時,可測得待測物及背景之吸光度;當與磁 場呈垂直方向之光源通過時,僅測得背景之吸光度,兩者相減可得到 樣品之實際吸光度^[38,39]。

圖 1-2 以 Zeeman 效應為基礎作為原子吸收光譜的背景校正系統^[39]