Abstract

Large amount of excess waste activated sludge (WAS) discharges from the municipal 2nd treatment plant may generate tremendous solid waste and disposal problems. Therefore, the minimization and reutilization of WAS are important topics to deal with. In this study, the pellets were made of various mixed ratios with WAS, local red soil and chemical additive (A) and then baked at 800° C for 1 hr. The optimal formula of pellets is 6: 5: 1 (WAS: red soil: additive) and with water absorption, density, and compressive strength of 60.49 %, 0.67 g/cm³ and 2.44 kgf/cm², respectively. The leachates of pellets also meet Toxicity Characteristics Leaching Procedure (TCLP) test. The pellets were used as immobilized media in biological SND process. The result showed the satisfactory (90 %) SND efficiency of the immobilized system under aerobic condition (DO = $1 \sim 2 \text{ mg/L}$) with an ammonium loading rate of 0.019 g-NH₄⁺-N/g-VSS/day. The Nernst equation can provide the practical information such as ORP control in a biological treatment for using on-line control strategy.

Keywords: waste activated sludge (WAS), bake, reuse, pellet, simultaneous nitrification and denitrification (SND), Nernst equations

摘 要

生物廢水處理已是目前全世界最盛行方式之一,它能有效率地除 去廢水中有機物污染(如碳、氮等基質污染),卻也隨著處理過程中產 生大量廢棄活性污泥。目前針對廢棄污泥處理方式仍以掩埋為主,對 環境上可能造成二次汙染之虞,因此,未來針對廢棄污泥處理方式應 以減量及資源回收方面進行。

在本研究中,係以斗六工業廢水處理之廢棄活性污泥與東海當地 廢棄紅土與少許化學添加物,按照重量以 6:5:1 比例混合並逐漸加溫 至 800℃後一小時燒製成擔體(rebuilt WAS pellet),燒製而成之擔體具 有 60.49 % 吸水率、0.67 g/cm³ 密度及 2.44 kgf/cm² 抗壓強度等性 質。而燒製後之擔體經毒性溶出特性(TCLP teat)檢驗後並無重金屬 溶出現象,因此,此燒製擔體可以作為生物廢水處理系統中生物接觸 擔體,並以生物膜形成方式來引導同時硝化與脫硝(simultaneous nitrification and denitrification, SND)反應效能。實驗結果顯 示在生物膜固定化之反應槽內,溶氧值為 1.0~2.0 mg/L,氨氮負荷 率 0.019 g-NH4⁺-N/g-VSS/day,可以引導出 SND 現象與效率,並透 過 Nernst euqtion 模擬出能以 ORP 作為此反應系統控制之策略。

III

關鍵字:廢棄活性污泥、燒製、再利用、擔體、同時硝化與脫硝、

Nernst equation

CONTENTS

Chapter 1 Introduction	1
1.1 Background Information	1
Chapter 2 Literature Review	5
2.1 Characteristics and Reutilization of Waste Activated Sludge	5
2.2 Mechanism of immobilized system	7
2.2.1 Formation of attached biofilm on bio-carrier	7
2.2.2 Mass and Oxygen transfer of immobilized system	9
2.3 Simultaneous nitrification and denitrification (SND) process in the	
immobilized system	11
2.3.1 SND of suspended growth activated reactor	11
2.3.2 SND of attached growth biofilm reactor	12
2.3.3 Advantage and disadvantage in immobilized system	13
2.4 Real-time control strategy	15
2.5 Research Objectives and Approach	16
Chapter 3 Materials and Methods	17
3.1 Experiment design and investigation flow chart	17
3.2 Rebuilt WAS pellet as immobilized media	19
3.2.1 Waste activated sludge sampling and its basic characteristics	
analysis	19
3.2.2 Preparation of rebuilt WAS pellets	20

3.2.3 Toxicity Characteristics Leaching Procedure (TCLP) of raw WAS	
and rebuilt pellets	21
3.2.4 Physical properties of rebuilt pellets	22
3.2.5 Attached biomass of thickness and microstructure	23
3.3 The immobilized system	25
3.3.1 Experiment setup	25
3.3.2 Experiment operation	28
3.3.3 Composition of the synthetic wastewater	30
3.3.4 Analysis method	33
Chapter 4 Result and Discussion	36
4.1 Basic characteristic of industrial waste activated sludge	36
4.2 Property of rebuilt WAS pellet	37
4.2.1 Optimum mixture of rebuilt WAS pellet	37
4.2.2 TCLP tests of raw WAS and rebuilt pellets	41
4.2.3 Loss of rebuilt WAS pellets with collision test	42
4.2.4 Biomass attached growth on the rebuilt WAS pellets	44
4.3 The Immobilized SND system	47
4.3.1 The SND operation conditions	47
4.3.2 The C/N Ratio on the immobilized system	57
4.3.3 The alkalinity and phosphate profile of different condition of	
baked under C/N = 10	59
4.3.4 Comparison the SND efficiency in different C/N ratios	62
4.4 Model Development	64
4.4.1 Nernst Equation for a General Oxidation-Reduction Reaction	64

4.4.2 Nitrification of immobilized SND process	65
4.4.3 Denitrification of immobilized SND process	66
4.4.4 Overall SND process in immobilized system	67
4.4.5 Nernst Equation established in SND Process	68
Chapter 5 Conclusions and Suggestions	71
5.1 Conclusions	71
5.2 Suggestions	73
References	74
Appendix I –Scanning Electron Microscope (SEM)	79

LIST OF FIGURES

Figure 2-1	Schematic presentation of the formation of a biofilm	8
Figure 2-2	Diagram of oxygen and mass transfer of immobilized	
	system	9
Figure 3-1	The flow chart of immobilized system study included	
	three parts of (A) Rebuilt WAS as immobilized media, (B)	
	Develop the immobilized system and (C) Develop pellet	
	SND model	18
Figure 3-2	Schematic of diagram of attached biomass thickness	
	detector	24
Figure 3-3	Schematic diagram of the immobilized system: (1) rebuilt	
	pellets, (2) aeration pump, (3) diffuser, (4) pH and ORP	
	meter, (5) DO meter, (6) magnetic agitation mixer, (7)	
	peristaltic pump and (8) computer	26
Figure 3-4	Operation cycle in AS with low DO, AS+pellet and AS	
	reactors	29
Figure 4-1	The compressive strength and bulk density under various	
	mixture ratio of rebuilt WAS pellets (dried sludge, red soil	
	and additive A)	40
Figure 4-2	The water adsorption and compressive strength under	
	various mixture ratio of rebuilt WAS pellets (dried sludge,	
	red soil and additive A)	40
Figure 4-3	Rebuilt WAS pellets after baked at 800° C for 1 hr	45
Figure 4-4	SEM image of (a) rebuilt pellet shape of sliced, (b)	

	biofilm attached to pellet surface and (c) attached growth	
	biofilm	46
Figure 4-5	The measurement of biofilm thickness with thickness	
	detector and multi meter	45
Figure 4-6	Profile of (a) SCOD, (b) NH_4^+ -N, NO_2^- -N and NO_3^- -N (c)	
	ORP, pH and DO concentrations of one cycle in the AS	
	with low DO reactor (C/N = 6, DO < 0.5 mg/L , n = 3)	49
Figure 4-7	Profile of (a) SCOD, (b) NH_4^+ -N, NO_2^- -N and NO_3^- -N (c)	
	ORP, pH and DO concentrations of one cycle in the	
	AS+pellet reactor (C/N = 6, DO = $1-2 \text{ mg/L}$, n = 3)	50
Figure 4-8	Profile of (a) SCOD, (b) NH_4^+ -N, NO_2^- -N and NO_3^- -N (c)	
	ORP, pH and DO concentrations of one cycle in the AS	
	reactor (C/N = 6, DO = $1-2 \text{ mg/L}, n = 3$)	51
Figure 4-9	Profile of (a) SCOD, (b) NH_4^+ -N, NO_2^- -N and NO_3^- -N (c)	
	ORP, pH and DO concentrations of one cycle in the AS	
	with low DO reactor (C/N = 10, DO < 0.5 mg/L , n = 3)	54
Figure 4-10	Profile of (a)SCOD, (b) NH_4^+ -N, NO_2^- -N and NO_3^- -N (c)	
	ORP, pH and DO concentrations of one cycle in the	
	AS+pellet reactor (C/N = 10, DO = $1-2 \text{ mg/L}, n = 3$)	55
Figure 4-11	Profile of (a)S COD, (b) NH_4^+ -N, NO_2^- -N and NO_3^- -N (c)	
	ORP, pH and DO concentrations of one cycle in the AS	
	reactor (C/N = 10, DO = $1-2 \text{ mg/L}, n = 3$)	56
Figure 4-13	Comparison of (a) NH_4^+ -N and SCOD, (b) NO_3^- -N and	
	$NO_2^{-}N$ (c) NH_2OH concentrations of one cycle in the	
	AS+pellet of C/Ns = 6 and 10	58

IX

Figure 4-14	Comparison of (a) alkalinity, (b) phosphate concentrations	
	of one cycle between the AS with AS with low DO,	
	AS+pellet and AS reactors (C/N = 10)	61

LIST OF TABLES

Table 2-1	Utilization of Sewage sludge ash (SSA)	6
Table 3-1	Classification of three types of bioreactors in this	
	study	25
Table 3-2	Types of other instruments in this study	27
Table 3-3	Composition of synthetic wastewater	31
Table 3-4	Characteristic of influent wastewater in AS with low DO,	
	AS+pellet and AS reactors	32
Table 3-5	The analysis items and Standard method in this study	35
Table 4-1	Basic characteristic of wasted activated sludge samples of	
	Dou Liou Industrial Park	36
Table 4-2	The bulk density and water adsorption of various ratio of	
	rebuilt WAS pellets	39
Table 4-3	The Heavy Metal concentration of TCLP Test for rebuilt	
	WAS pellets	43
Table 4-4	The comparison of nitrification, denitrification rates and	
	SND efficiency in different C/N ratios between this study	
	and literature	63
Table 4-5	Results of regression analysis on the Nernst equation for	
	the nitrification and denitrification of SND process with a	
	influent C/N ratio of 10	70
Table I-1	Concentration and immersing time for dehydration	
	biomass	80