Contents

Chapter 1 Introduciton	
1.1 Introduction	1
1.2 Objectives	6
Chapter 2 Literature review	7
2.1 Natural organic matters in eutrophication reservoir water	7
2.2 Application of ozone	8
2.3 Disinfection by-products (DBPs)	9
2.4 Two stage ozone reaction	
2.5 Scavenger and hydroxyl radical measurement in ozonation	12
2.6 Application of on-line oscilloscope to monitor the ozonation	14
2.7 Changes of functional groups during ozonation	15
Chapter 3 Materials and methods	17
3.1 Experimental design	17
3.2 Method and Instrument	
3.2.1 Sampling site	
3.2.2 Isolation and fraction	
3.2.3 Disinfection by-product formation potential studies	
3.2.4 Ozonation system	25
3.2.5 On-line oscilloscope monitor apparatus	
3.3 Analysis Methods	
3.3.1 Basic water quality analysis	

3.3.2 Trihalomethanes	
3.3.3 Haloacetic acids (HAAs)	34
3.3.4 Adsorbed organic halides	40
3.3.5 Absoebance at the wavelength of 254 nm	
3.3.6 Dissolve organic carbon	43
3.3.7 Hydroxyl radical determination	
3.3.8 Fourier Transform Infrared Spectrometer	
3.3.9 Thirteen Carbon Nuclear Magnetic Resonance	49
Chapter 4 Results and discussion	
4.1 Water quality of Te-Chi reservoir	
4.2 The investigation of direct and indirect ozonation	63
4.3 Nernst model simulation and application	73
4.4 Changes of functional groups in inhibited and non-inhibited reaction	
Chapter 5 Conclusions and suggestions	
5.1 Conclusions	
5.2 Suggestions	
References	

List of Tables

Table 3.1 Summaries of the regents and equipments for nature organic matters water separation by recent extraction process.	esin 24
Table 3.2 Basic water quality analytical items and methods	30
Table 3.3 Summaries of the calibration equations for THMs	32
Table 3.4 Summaries of the reagents and equipment used for THMs analysis	
Table 3.5 Purge & trap and GC/ECD analysis conditions of THMs	34
Table 3.6 Summaries the calibration equations for HAAs.	36
Table 3.7 GC/ECD analysis conditions for HAAs.	37
Table 3.8 Summaries of the regents and equipment used for HAAs analysis	38
Table 3.9 Summaries of the reagents and equipment for AOX analysis	40
Table 3.10 The recovery test of AOX	40
Table 3.11 Summaries of the regents and equipment for DOC test	43
Table 3.12 Summaries of the calibration equation for DOC.	43
Table 3.13 Summaries of the calibration equations for coumarin and 7OH-coumarin	46
Table 3.14 The retention time of the isomers of OH-coumarin	47
Table 4.1 The water quality parameters of Te-Chi reservoir raw water in recent years	52
Table 4.2 The percentage distribution of Te-Chi reservoir NOMs (% of DOC) in recent years and comparison of literatures.	56
Table 4.3 Comparison of THMFP/DOC, HAAFP/DOC, AOXFP/DOC and (THMFP+HAAFP)/(AO (HAs, FAs, hydrophobic bases, hydrophobic neutrals and hydrophilic fractions separated f Te-Chi reservoir) obtained from literatures and this study	XFP) rom 62
Table 4.4 Abbreviated tables of group frequencies for organic groups (Calace et al., 1999 and Hafidi al., 2005)	et 79

List of Figures

Figure 3.1	The experimental design for ozonation and analysis in this study	.19
Figure 3.2	Sampling location of Te-Chi Reservoir, which provides water for domestic water in Tai-Chung area, central Taiwan, ROC	.20
Figure 3.3	The flowchart of five species of NOMs (HAs, FAs, hydrophobic neutrals, hydrophobic bas and hydrophilic fractions) extracted from Te-Chi Reservoir raw water by resins separation process	es .24
Figure 3.4	Schematic of diagrams ozonation apparatus	.27
Figure 4.1	The percentage of five species of organic fractions separated from Te-Chi Reservoir in 2004.	.55
Figure 4.2	The SUVA value (A ₂₅₄ /DOC) of raw water and five fractions (HAs, FAs, hydrophobic base hydrophobic neutrals and hydrophilic fractions) extracted from Te-Chi Reservoir in 2004.	s, .59
Figure 4.3	The DBPFPs/DOC of raw water and five organic fractions (HAs, FAs, hydrophobic bases, hydrophobic neutrals and hydrophilic fractions) extracted from Te-Chi Reservoir in 2004.	.61
Figure 4.4	The consumed coumarin concentration (mg/L) vs. the initial addition coumarin concentrati (mg/L) in pure water until DO ₃ = 0 mg/L	on .65
Figure 4.5	The consumed coumarin concentration (mg/L) of the theoretical maximum scavenger dosa in ozone blank is 5 mg/L concentration (mg/L) in blank test (pure water) when $DO_3 = 0$ mg/L	ge .67
Figure 4.6	The analytic values (ORP, pH, DO ₃ and hydroxyl radicals) in ozone degradation of Te-Chi Reservoir raw water.	.69
Figure 4.7	The analytic values (ORP and DO ₃) in ozone degradation of pure water	.69
Figure 4.8	The analytic values (ORP, pH, DO_3 and hydroxyl radicals) in ozone degradation of Te-Chi Reservoir raw water with quench inhibition test.	.71
Figure 4.9	The comparison of ORP profile with inhibit dose quenching 5mg/L and without inhibit und ozonation with Te-Chi Reservoir raw water	er .72
Figure 4.1	0 FTIR spectrums of Te-Chi Reservoir raw water during (a) before ozonation, (b) after ozonation with 5mg/L scavenger and (c) after ozonation	.81

Figure 4.11 FTIR spectrums of HAs extracted from Te-Chi Reservoir raw water during (a) before ozonation, (b) after ozonation with 5mg/L scavenger and (c) after ozonation	83
Figure 4.12 ¹³ C NMR spectra of Te-Chi Reservoir raw water (a) before ozonation, (b) after ozonation and scavenger and (c) after ozoantion	86
Figure 4.13 ¹³ C NMR spectra of HAs extracted from Te-Chi Reservoir raw water (a) before ozonation (b) after ozonation and scavenger and (c) after ozoantion	

Nomenclature

¹³ C-NMR	¹³ C nuclear magnetic resonance	碳 13 核磁共振光譜儀
A ₂₅₄	Absorbance at 254 nm	254 nm 波長之吸光度
AOP	Advanced oxidation process	高級氧化法
AOX	Adsorbable organic halides	吸附性鹵化有機物
AOXFP	Adsorbable organic halides formation potential, μ g-Cl/mg	吸附性鹵化有機物生成潛能
COD	Chemical oxygen demand	化學需氧量
DBPFP	Disinfection by-products formation potential	消毒副產物生成潛能
DBPs	Disinfection by-products	消毒副產物
DO	Dissolved oxygen	溶氧
DO ₃	Dissolved ozone	溶臭氧
DOC	Dissolved organic carbon	溶解有機碳
FAs	Fulvic acids	黃酸
FTIR	Fourier transform infrared spectrophotometer	傅利葉轉換紅外線光譜
HAs	Humic acids	腐植酸
HAAFP	Haloacetic acids formation potential	鹵化乙酸生成潛能
HAAs	Haloaceetic acid	鹵化乙酸
HPLC	High performance liquid chromatography	液相層析儀
NOMs	Natural organic matters	天然有機物
OH radical	Hydroxyl radical	氫氧自由基
ORP	Oxidation reduction potential	氧化還原電位
SUVA	Specific ultra-violet absorbance	比吸光度
TDS	Total dissolved solids	總溶解固體
THMFP	Trihalomethane formation potential	三鹵甲烷生成潛能
THMs	Trihalomethanes	三鹵甲烷

n e ⁻	n mole electron	n 莫耳電子
Е	the electrode potential of chemical reactions (mV)	化學反應電位
E^0	the standard electron potential (mV)	標準電位
R	gas constant (8.314 V-coulombs K ⁻¹ mol ⁻¹)	氣體常數
Т	the absolute temperature (K)	絕對溫度
2	the number of electrochemical gram equivalent per gram mole	轉移電子之莫耳數
n	exchanged during the redox reaction (equivalent mol ⁻¹)	
F	Frarday's constant (96,500 coulombs equivalent ⁻¹)	法拉第常數
[Oxi]	oxidizing agent	氧化劑
[Red]	reducing agent	還原劑