
`̀̀ ���

&Æx�ÎÞ Hidden Markov model Tà3�;W (phylogenetic tree) Ý

�xî«� ôµÎ¯�;W�Ý\ (branch)b×Í^£�&ÆqA9×Í

^£¼X�&Æ#�#å9×Í\�9×Í^£µÎGibbs sampler method�

Ýproposal distritubtion�9×Í2øÝ]°º3Ï"a�Þ1��

.!`Æ��;Wõ9¥��fE(multiple sequence alignment)Î×�

æpÝé\�ÕÝ��� �9]°�Î§×��Ý9>µÎ¸à&ð��Ý

�;Wõ9¥fEÝÿl� &Æº3Ï0a+Û×Í]°¼¸�|îÝËË

§×� &Æ3Ï"a+Û×Í��Ý]°¼¯&Æ�|�Dê�§�Ï0a

X�+ÛÝ]°� 3Ï"ab+ÛÕ×Ë2øÝ]°�9×Í]°Î¦Ã3

�'b×Í�;WÝ�µ�ì� &Æ�A¢��9¥��fE�Q��Ï0

aQÎ!`�?9Ë�¯�

&Æ´�º+Û Hidden Markov models ÝÃÍÃF��¼��Ý+Ûë

ËðàÝ�;W�Q¡¿à Markov chain Monte Coral �Ý Gibbs sampling

method Þ9ËÍÌF��)�t¡+Û&ÆÝxÞ� µÎ¸àGibbs sampling

methodg)¸àHidden Markov models
�¾Õ&ÆÝêÝ�

n"C�Hidden Markov model��;W (phylogenetic tree)�Markov chain

Monte Corlo�tree Hidden Markov models�

i



Abstract

We apply Hidden Markov Model to phylogenetic tree construction; that is, we

compute the probabilities of the branches of the phylogentic tree and decide

whether to accept it or not. The probabilities are the proposal distributions in

the Gibbs sampler method. We will discuss the method in chapter 5.

Carrying out simultaneous tree-building and alignment of sequence data is a

difficult computational task. Many methods are either limited to a few sequences

or restricted to highly simplified models of alignment and phylogeny. A method

is given in chapter 6 for overcoming these limitations. We introduce a simple

method in chapter 5 in order to help us to understand the method in chapter

6. In chapter 5, we introduce a sampling method. This sampling method do a

multiple sequences alignment conditioned on a phylogenetic tree. However we

can do the two things simultaneously in chapter 6.

We will first introduce the basic concepts of the Hidden Markov models. Then

we will discuss the phylogenetic tree and three kinds of the phylogenetic tree

construction methods most commonly used. And we will use the Gibbs sampling

method of the Markov chain Monte Carlo to combine the Hidden Markov models

and sample the phylogenetic tree in a tree Hidden Markov model.

Keywords : Hidden Markov Model, phylogenetic tree, Markov chain Monte

Carlo, tree Hidden Markov Model.

ii



Contents

`̀̀��� i

Abstract ii

1 Introduction 2

2 Markov chains and hidden Markov models 6

2.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Most probable state path: the Viterbi algorithm . . . . . . 8

2.2.2 The forward algorithm . . . . . . . . . . . . . . . . . . . . 9

2.2.3 The backward algorithm . . . . . . . . . . . . . . . . . . . 10

2.3 Parameter estimation for HMMs . . . . . . . . . . . . . . . . . . . 11

2.3.1 Estimation when the state sequence is known . . . . . . . 11

2.3.2 Estimation when paths are unknown: Baum-Welch . . . . 11

3 Multiple alignment using HMMs 14

3.1 Pairwise alignment using HMMs . . . . . . . . . . . . . . . . . . . 14

3.1.1 The most probable path . . . . . . . . . . . . . . . . . . . 15

3.1.2 The full probability of x and y, summing over all paths . . 16

3.1.3 The backward algorithm for pair HMMs . . . . . . . . . . 17

3.2 Profile HMMs for sequence families . . . . . . . . . . . . . . . . . 18

3.2.1 Adding insert and delete states to obtain profile HMMs . . 18

iii



3.2.2 Basic profile HMM parameterization . . . . . . . . . . . . 19

3.2.3 Searching with profile HMMs . . . . . . . . . . . . . . . . 20

3.2.4 Multiple alignment by profile HMM training . . . . . . . . 22

4 Phylogenetic trees 25

4.1 Background on the phylogenetic trees . . . . . . . . . . . . . . . . 25

4.2 Three kinds of phylogenetic trees . . . . . . . . . . . . . . . . . . 26

4.2.1 Distance methods . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Maximum parsimony . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . 31

5 Multiple sequence alignment and evolutionary HMM 38

5.1 The links model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 The link model as a pair HMM . . . . . . . . . . . . . . . . . . . 42

5.2.1 From pair HMMs to multiple HMMs . . . . . . . . . . . . 43

5.2.2 Eliminating internal nodes . . . . . . . . . . . . . . . . . . 46

5.3 Gibbs sampling method . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Algorithm: under a given tree . . . . . . . . . . . . . . . . . . . . 50

6 Tree HMM 52

6.1 Modeling of phylogeny and alignment: The Tree-HMM . . . . . . 52

6.2 Sampling from alignments and trees . . . . . . . . . . . . . . . . . 59

6.3 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . . . 65

References 66

1



Chapter 1

Introduction

We know that all species are related because all species share similar genes and

have similar gene functions. But how do biologists judge the relationships of

any two species? Building a phylogenetic tree is a simplest way to find the

relationships of all species.

There are many methods to build the phylogenetic trees. Most of them

assume the site independence; that is, one site does not affect the evolution of

its adjacent site. For instance, the Maximum parsimony, Maximum likelihood

and so on have this assumption. But this assumption does not conform to the

actual evolution.

All these phylogenetic tree construction methods are based on multiple se-

quences alignment. But the commonly used multiple sequences alignment method

is actually based by a guide tree. Phylogenetic tree building by this way may

be incorrect. We will follow Mitchison’ paper [18] to introduce a method which

can carry out phylogenetic tree and multiple alignment at the same time. This

method was first introduced by Mitchison and Durbin (1995) [17].

This does not need this assumption of the independence of evolution of in-

dividual site. The method uses the Hidden Markov model (HMM) to explain

the relationship between one site and its adjacent sites. This model is called the

tree-HMM.

2



The basic theory of hidden Markov models was published in a series of classic

papers by Baum and his colleagues in the late 1960s and early 1970s and was

implemented for speech processing applications by Baker at CMU, and by Jelinek

and his colleagues at IBM in the 1970s. The Hidden Markov model is composed

of a number of states, which might correspond to positions in a 3D structure or

columns of a multiple alignment. Each state ‘emits’ symbols (residues) according

to symbol emission probabilities. The movement from one state to the next state

corresponds to the state-transition probability.

Starting from some initial state, a sequence of states is generated by moving

from state to state according to the state-transition probabilities until an end

state is reached. Then each state emits symbols according to that state’s emission

probability distribution, creating an observable sequence of symbols. Why are

called the hidden Markov model? Because that this state sequence is usually not

observed.

A phylogenetic tree is assumed to be binary here and has branches, just as in

plants. Three methods which are distance methods, maximum parsimony, and

maximum likelihood are commonly used. Distance methods works by clustering

the sequences. At each step it combines two clusters and at the same time

creating a new node on a tree. The tree can be imagined as being collected

upwards, each node being added above the others.

Maximum parsimony is one of the most widely used tree building algorithms.

It works by finding the tree of the observed sequences with a minimal number of

substitutions. Instead of building a tree, it assigns a cost to a given tree and it

is necessary to search through all topologies in order to identify the ‘best’ tree.

Maximum likelihood method uses probability calculations to find a tree that

best accounts for the variation in a set of sequences. All possible trees are

considered. It uses explicit evolutionary models such as the Jukes-Cantor and

Kimura models with allowances for variations in base composition.

For the tree Hidden Markov Model, we follow the discussions in G.J. Mitchi-

3



son (1999) [18] and Ian Holmes and William J. Bruno (2001) [12]. In Mitchison’s

paper, he developed a model: tree-HMM. The tree-HMM is similar to the pro-

file HMM. In the tree-HMM there is no insertion states but insertions are still

allowed (see Figure 1.1). Insertions occur when a sequence uses a match state

at a position where its ancestor uses a delete state. Hence it is not necessary

represented by a special state.

Figure 1.1: The tree-HMM; come from G.J. Mitchison (1999); Excerpt from [18]

Consider the simplest possible evolutionary tree, T , consisting of a single edge

of length d, with a leaf node at one end and a root node at the other. Let the

sequence of the leaf be x and that at the y, and the length of the model is 4 (see

Figure 1.2).

In the alignment we can see that y go through states M , M , D, D, i.e., the

symbols are represented to go through the match state and ‘-’ is represented to

go through the delete state. Hence x go through states M , D, D, M . There

are transition probabilities that x is derived from y for one position to the next

position. And we can see that x goes through D but y goes through M at the

position 2. Then we can not regarded that x is derived from y by substitution.

To solve this problem, there is a convenient rule. This rule is namely the

‘* rule’. The * rule replaces the missing ancestral or descendent sequences at

such positions by sum over all possible emissions or transitions. After the defini-

tion of emission and transition probabilities, we can calculate the probability of

P (x, y|T ). Since we do not know what is the sequence, y. We must sum over all

possible emissions and transitions, for y, to get the probability of the observed

sequence, x.

4



Figure 1.2: An simplest example for the tree-HMM; G.J. Mitchison (1999); Ex-

cerpt from [18]

In Holmes and Bruno’s paper, they use a given tree to do multiple sequences

alignment. They also use the tree-HMM, and they add the link model proposed

by Thorne et al (1991, 1992). They develop a multiple alignment algorithm by

Bayesian inference conditioned on a tree.

This tree-HMM has the advantage that it can have deletions that are more

than one base long. But it suffers from some lack of realism. When a group of

adjacent bases is deleted, the bases retain information about the base sequence.

And if they are inserted again, there will be some memory of the original base

sequence. Holmes and Bruno (2001) [12] point out that it is also possible that

when a series of bases is reinsertied there may be ‘memory’ of an internal gap

that was once there and that now returns with them.

Mitchison’s paper is difficult to understand and has no implements and no

source code. Mitchison also used Bayesian sampling to do tree-building and

alignment of sequence data simultaneous. Hence we use Holmes and Bruno’s

paper [12] to help us to understand Mitchison’s paper. The goal of this thesis is

to do a simple and detailed illustration of the methods in Mitchison’s paper [18].

5



Chapter 2

Markov chains and hidden

Markov models

Our materials come from [3] and [5]. This main goal of chapter will introduce

a probabilistic model for sequences of symbols, called a hidden Markov model

(abbreviated HMM). The types of question we can use HMMs and their near

relations, Markov Models, to consider are: ‘Does this sequence belong to a par-

ticular family?’ or ‘Assuming the sequence does come from some family, what

can we say about its internal structure?’

The hugeous majority of papers on HMMs belong to the speech recognition

literature, where they were applied first in the early 1970s. Many problems in

biological sequence analysis have the same structure of the speech recognition,

so it is applied to biology.

Example: CpG islands

In the human genome, there is a relatively high chance of the methyl-C mu-

tating into a T, with the result that in general CpG dinucleotides are unusual in

the genome than in random. For biologically important reasons the methylation

process is suppressed in short stretches of the genome, such as around the pro-

moters or ‘start’ regions of many genes. In these regions we see many more CpG

6



dinucleotides than elsewhere, and such regions are called CpG islands.

We will consider two questions: Given a short stretch of genomic sequence,

how would we decide if it comes from a CpG island or not? Given a long piece

of sequence, how would we find the CpG islands in it, if there are any?

2.1 Markov chains

A classical Markov chain is a model that generates sequences in which probability

of a symbol depends on the previous symbol. In other words, the probabilities

of each symbol xi depends only on the value of the preceding symbol xi−1, not

on the entire previous sequence, i.e., P (xi|xi−1, xi−2, . . . , x1) = P (xi|xi−1). We

like to show a Markov chain graphically as a collection of ‘state’, each of which

corresponds to a particular residue, with arrows between the states. The transi-

tion probability is the probability parameter of the arrows, which determines the

probability of a certain residue following another residue, or one state following

another state and we denote it by

ast = P (xi = t|xi−1 = s)

Figure 2.1: a Markov chain graphically as a collection of ‘state’, each of which corre-

sponds to a particular residue, with arrows between the states; Excerpt from [3].

7



2.2 Hidden Markov models

Given a simple example to introduce what the Hidden Markov models are. In a

casino they used a fair die most of the time, but occasionally they switch to a

loaded die. The switch between dice is a Markov process. What is hidden in the

model? If you can just see a sequence of rolls and you do not know which rolls

used a loaded die and which used a fair one, because that is kept secret by the

casino; that is, the state sequence is hidden.

Hence the essential difference between a Markov chain and a hidden Markov

model is that for a hidden Markov model there is not a one-to-one correspondence

between the states and the symbols. Let us call the state sequence the path,

π. The ith state in the path is called πi. The transition probability is the

probability of the state to next state, i.e., akl = P (πi = l|πi−1 = k). The

emission probability is the probability that a symbol b is seen when in state k,

i.e., ek(b) = P (xi = b|πi = k)

2.2.1 Most probable state path: the Viterbi algorithm

Although it is no longer possible to tell what state the system is in by looking at

the corresponding symbol, it is often the sequence of underlying states that we

are interested in. There are several approaches to find out what the observation

sequence of underlying states. Here we will describe the most common one, called

the Viterbi algorithm.

In general, many state sequences might give raise the same symbol sequence.

For example, in the CpG model the state sequences (C+, G+, C+, G+), (C−, G−,

C−, G−), (C+, G−, C+, G−) would generate the symbol sequence CGCG. The

third is the product of multiple small probabilities of switching CpG islands and

non CpG islands between the components and it is much smaller than others. The

second is much smaller than the first because it contains two C to G transitions

which are less probable in the ‘-’ component than in the ‘+’ component. Hence

8



it is most likely that the sequence CGCG came from a set of ‘+’ states.

If we choose just one path for our prediction, perhaps the one with the highest

probability should be chosen,

π∗ = argmax P (x, π)
π

The most probable path π∗ can be found recursively. The probability vk(i) of

the most probable path ending in state k with observation i is know for all the

states k. Then

vl(i + 1) = el(xi+1)max
k

(vk(i)aal)

The full algorithm is:

Algorithm: Viterbi algorithm

1. Initialization (i = L): v0(0) = 1, vk(0) = 0 for k > 0

2. Recursion (i = 1 . . . L): vl(i) = el(xi) maxk(vk(i− 1)akl)

ptri(l) = argmaxk(vk(i− 1)akl)

3. Termination: P (x, π∗) = maxk(vk(L)ak0)

π∗L = argmaxk(vk(L)ak0)

4. Termination: π∗i−1 = ptri(π
∗
i )

2.2.2 The forward algorithm

For Markov chain, we can use the probability of a sequence, P (x), to distinguish

between CpG islands and other DNA. But for Hidden Markov model, there

are many different state path can give the same sequence, we must add the

probabilities for all possible paths to obtain the full probability,

P (x) =
∑

π

P (x, π)

9



The number of possible paths increases exponentially with the length of the

sequence, so we need a clever method to solve this problem. That is the forward

algorithm.

fk(i) = P (x1, . . . , xi, πi = k),

which is the probability of the observed sequence up to and including xi, requiring

that πi = k. The recursion equation is

fl(i + 1) = el(xi+1)
∑

k

fk(i)akl.

The full algorithm is:

Algorithm: Forward algorithm

1. Initialization (i = L): f0(0) = 1, fk(0) = 0 for k > 0

2. Recursion (i = 1 . . . L): fl(i) = el(xi)
∑

k fk(i− 1)akl

3. Termination: P (x) =
∑

k fk(L)ak0

2.2.3 The backward algorithm

We might not want to know the most probable path of the observed sequence,

but we might interest in the probability that observation xi come from state k

given the observed sequence, P (πi = k|x).

Since P (πi = k|x) = P (πi=k,x)
P (x)

, we start the probability, P (πi = k, x).

P (x, πi = k) = P (x1, . . . , xi, πi = k)P (xi+1, . . . , xL|x1, . . . , xi, πi = k)

= P (x1, . . . , xi, πi = k)P (xi+1, . . . , xl|πi = k)

the second row following because everything after k only depends on the state

at k. The first term in this is fk(i). The second term is called bk(i),

bk(i) = P (xi+1, . . . , xl|πi = k).

10



It is analogous to the forward variable, but obtained by a backward recursion

from the end of the sequence.

Algorithm: Backward algorithm

1. Initialization (i = L): bk(L) = ak0 for all k > 0

2. Recursion (i = L− 1 . . . 1): bk(i) =
∑

l aklel(xi+1)blk(i + 1)

3. Termination: P (x) =
∑

l a0lel(x1)bl(1)

2.3 Parameter estimation for HMMs

2.3.1 Estimation when the state sequence is known

When all paths are known, we can count the number of times each particular

transition or emission is used in the set of training sequences. Let these be Akl

and Ek(b). And using the maximum likelihood estimators for akl and ek(b) are

given by

akl =
Akl∑
l′ Akl′

and ek(b) =
Ek(b)∑
b′ Ek(b′)

(2.1)

There is a defect for maximum likelihood estimators if there are insufficient

data. Then some transitions or emissions do not find out in the insufficient data

which might have value zero. To avoid this it is preferable to add predetermined

pseudocounts to the Akl and Ek(b).

2.3.2 Estimation when paths are unknown: Baum-Welch

When the paths are unknown for the training sequences, there is no longer direct

to estimate parameter value. There is a algorithm that is used most frequently,

known as the Baum-Welch algorithm [Baum 1972].

It first estimates the Akl and Ek(b) by considering probable path for the

training sequences using the current values of akl and ek(b). Then (2.1) is used

11



to derive new values of the as and es. This process is iterated until some stopping

criterion is reached.

The Baum-Welch algorithm calculates Akl and Ek(b) as the expected number

of times each transition or emission is used, given the training sequence. The

probability that akl is used at position i in sequence x is

P (πi = k, πi+1 = l|x, θ) =
fk(i)aklel(xi+1)bl(i + 1)

P (x)
.

Then Akl is calculated by summing over all positions and over all training se-

quences,

Akl =
∑

j

1

P (xj)

∑
i

f j
k(i)aklel(x

j
i+1)b

j
l (i + 1) (2.2)

where f j
k(i) is the forward variable calculated for the sequence j and bj

l (i + 1) is

the backward variable calculated for the sequence j. Similarly, we can find the

expected number of times that character b appears in state k,

Ek(b) =
∑

j

1

P (xj)

∑

{i|xj
i =b}

f j
k(i)bj

k(i) (2.3)

The full algorithm is:

Algorithm: Baum-Welch algorithm

1. Initialization: Pick arbitrary model parameters.

2. Recursion: Set all the A and E variables to their pseudocount values r (or

to zero).

for each sequence j = 1 . . . n

Calculate fk(i) for sequence j using the forward algorithm.

Calculate bk(i) for sequence j using the backward algorithm.

Add the contribution of sequence j to A (2.2) and E (2.3)

Calculate the new model parameters using (2.1).

Calculate the new log likelihood of the model.

12



3. Termination: Stop if the change in log likelihood is less than some prede-

fined threshold or the maximum number of iterations is exceeded.

Here the log likelihood of the model is

l(x1, . . . , xn|θ) = log P (x1, . . . , xn|θ) =
n∑

j=1

log P (xj|θ)

13



Chapter 3

Multiple alignment using HMMs

Since functionally similar biological sequences typically come in families, many

methods can help us to identify that a sequence belongs to a family by aligning it

to the other members, and therefore allows inferences about its functions. How

do we identify such features? A multiple alignment can show how the sequences

in a family to relate to each other. You can refer to [3] for detail.

3.1 Pairwise alignment using HMMs

In the previous chapter, we introduced several kinds of methods for HMMs. Now,

we will apply those to pairwise alignment.

We required three states; one corresponding to match that is named M , and

two states corresponding to insert that are named X and Y , as shown Figure 3.1.

We must give probabilities both for emissions of symbols from the states, and

for transitions between states. State M has the emission probability distribution

pab for emitting an aligned pair a : b. State X has a distribution qxi
for emitting

xi from sequence x against a gap. Similarly, state Y has a distribution qyi
. We

denote the transition from M to an insert state (X or Y ) by δ, and the probability

of staying in an insert state by ε. Let τ be the transition into the End state.

These probabilities must satisfy the requirement that the probabilities for all the

14



transitions leaving each state sum to one.

Figure 3.1: A finite state diagram for the corresponding probabilistic model; Excerpt

from [3].

This model is similar to a hidden Markov model and the difference is that

instead of emitting a single sequence it emits a pairwise alignment. When starting

in the Begin state, we obey the following two steps: (1) pick the next state

according to the distribution of transition probabilities leaving the current state;

(2) pick a symbol pair to be added to the alignment according to the emission

distribution in the new state.

3.1.1 The most probable path

The essential concept is the same. Since there are three states, we will specify the

recurrence equations. vM(i, j) is that xi is aligned to yi, so the value of vM(i, j)

is derived from the maximum value of three states. vX(i, j) is that xi is aligned

a gap. Since we use affine gap penalties, we do not allow that a gap appears to

one sequence and a gap appears to the other sequence at once. Hence vX(i, j) is

derived from the maximum value of two states except state Y . vY (i, j) is similar

to vX(i, j).

Algorithm: Viterbi algorithm for pair HMMs

1. Initialization: vM(0, 0) = 1. All other v•(i, 0) , v•(0, j).

15



2. Recurrence: i = 1, . . . , n, j = 1, . . . , m

vM(i, j) = pxiyj
max





(1− 2δ − τ)vM(i− 1, j − 1)

(1− ε− τ)vX(i− 1, j − 1)

(1− ε− τ)vY (i− 1, j − 1)

(= emission max (transition× the last one))

vX(i, j) = qxi
max





δvM(i− 1, j)

εvX(i− 1, j)

vY (i, j) = qyj
max





δvM(i, j − 1)

εvY (i, j − 1)

3. Termination: vE = τ max(vM(n,m), vX(n,m), vY (n,m))

3.1.2 The full probability of x and y, summing over all

paths

In the previous chapter, we use the forward algorithm to solve the equation,

P (x) =
∑

π P (x, π). We will consider the similar problem,

P (x, y) =
∑

alignments π

P (x, y, π).

Here, the recurrence relations are similar to the variables of the Viterbi algorithm.

The difference is the max converting to the sum.

Algorithm: Forward calculation for pair HMMs

1. Initialization: fM(0, 0) = 1, fX(0, 0) = 0, fY (0, 0) = 0.

All f •(i,−1), f •(−1, j) are set to 0.

(Why is -1? Because we will calculate f •(i,−1) and f •(−1, j))

16



2. Recursion: i = 0, . . . , n j = 0, . . . ,m except (0, 0) (because (0,0) is calcu-

lated in the initialization.)

fM(i, j) = pxiyj
× [(1− 2δ − τ)fM(i− 1, j − 1)

+(1− ε− τ)fX(i− 1, j − 1) + (1− ε− τ)vY (i− 1, j − 1)]

(= emission×∑
(transition× the last one).)

fX(i, j) = qxi
[δfM(i− 1, j) + εfX(i− 1, j)]

fY (i, j) = qyj
[δfM(i, j − 1) + εfY (i, j − 1)]

3. Termination: fE(n,m) = τ(fM(n,m) + fX(n,m) + fY (n,m)).

3.1.3 The backward algorithm for pair HMMs

The degree of conservations varies depending on structural and functional con-

straints, so that the core sequences may be well conserved, while loop regions

are not reliably alignable. In order to accomplish this goal, we will use the back-

ward algorithm for pair HMMs similar to the backward algorithm in the previous

chapter. That is, we will calculate the value of P (xi ¦ yj|x, y).

The new notation xi ¦ yj means that xi is aligned to yj. Then using the

conditional probability theory we have

P (x, y, xi ¦ yj) = P (x1...i, y1...j, xi ¦ yj)P (xi+1...n, yj+1...m|x1...i, y1...jxi ¦ yj)

= P (x1...i, y1...j, xi ¦ yj)P (xi+1...n, yj+1...m|xi ¦ yj)

Then we can use the Bayes’ rule to obtain

P (xi ¦ yj|x, y) =
P (x, y, xi ¦ yj)

P (x, y)
,

Algorithm: The backward algorithm for pair HMMs

1. Initialization: bM(n,m) = bX(n,m) = fY (n,m) = τ.

All b•(i,m + 1), b•(n + 1, j) are set to 0.

17



2. Recurrence: i = n, · · · , 1, j = m, · · · , 1 except (n,m)

bM(i, j) = (1− 2δ − τ)pxi+1yj+1
bM(i + 1, j + 1)

+δ(qxi+1
bX(i + 1, j) + qyj+1

bY (i, j + 1))

bX(i, j) = (1− δ − τ)pxi+1yj+1
bM(i + 1, j + 1) + εqxi+1

bX(i + 1, j)

bY (i, j) = (1− δ − τ)pxi+1yj+1
bM(i + 1, j + 1) + εqyj+1

bY (i, j + 1))

3.2 Profile HMMs for sequence families

It is clear that some positions in the globin alignment are more conserved than

others. For example, the helices are more conserved than the loop regions. The

profile HMMs can help us to obtain these features.

3.2.1 Adding insert and delete states to obtain profile

HMMs

Before we start to introduce this model, we want to introduce a ‘PSSM’. PSSM is

the abbreviation of ‘position specific score matrix’. A PSSM is a scoring matrix

and depends on the position of alignment, i.e. S =
L∑

i=1

log
ei(xi)

qxi

, where ei(xi) is

the probability of observing amino acid xi in position i and qxi
is the probability

of generating xi randomly. A PSSM captures some conservation information,

but it is not sufficient to represent all of the information in a multiple alignment

of a protein family. So we will modify the PSSM. We will call a series of identical

states that using the PSSM as match states.

Now we will deal with gaps. First we consider the insert states. Portions

of the whole alignment do not match anything in the model. Hence we need

another state to specify that part, i.e. this state is called insert state Ii, where Ii

18



will be used to match insertions after the residue matching the ith column of the

multiple alignment. The Ii have emission distribution eIi
(a). We need transitions

from Mi to Ii, a loop transition from Ii to itself, to allow multi-residue insertions,

and a transition back from Ii to Mi+1. We denote insert state in our graph by

diamonds.

Next step we will handle the deletions. Segments of the multiple alignment

that are not matched by any residue. Deletions could be handled by forward

‘jump’ transitions between non-neighboring match states. The deletion states

do not emit any residue.

Figure 3.2: The transition structure of a profile HMM. We use diamonds to indicate

the insert states and circles for the delete states; Excerpt from [3].

3.2.2 Basic profile HMM parameterization

The aim of the parameterization processes it to make the distribution maximum

around members of the family. Assuming that the emission and transition prob-

abilities are nonzero, a profile HMM can model any possible sequence of residues

from the given alphabet.

19



The choice of length of the model corresponds more precisely to a decision on

which multiple alignment columns to assign to match states, and which to assign

to insert states. A simple rule to decide which columns should correspond to

match states or insert states, i.e. that column are more than half gap characters

should be modeled by inserts.

A problem is how to assign the probability parameters. When the alignment

is given, we just count up the times of each transition or emission and assign

probabilities according to

akl =
Akl∑
l′ Akl′

and ek(a) =
Ek(a)∑
a′ Ek(a′)

where k and l are indices over states, and akl and ek(a) are the transition and

emission probabilities, and Akl and Ek are the corresponding frequencies.

In the few training sequences, a major difficult is some transition probabilities

or emission probabilities that are not seen in training alignment. To avoid zero

probabilities, we will add pseudo counts to the observed frequencies. The simplest

pseudo count method is Laplace’s rule that to add one to each frequency.

3.2.3 Searching with profile HMMs

One of the main purposes of developing profile HMMs is to use them to find out

potential membership in a family by obtaining important matches of a sequence

to the profile HMM. We either use the Viterbi equation to give the most probable

alignment π∗ of a sequence x together with its probability P (x, π∗|M), or the

forward equations to calculate the full probability of x summed over all possible

paths P (x|M).

Viterbi equations

We will consider the log-odds ratio of the resulting probability to the probability

of x given our standard random model because we can avoid problems of un-

derflow when working with raw probability. Before introducing the algorithm,

20



we need to introduce the notations.V M
j (i) is the log-odds score of the best path

ending with xi being emitted by state Mj. V I
j (i) is the score of the best path

ending in xi being emitted by state Ij. V D
j (i) is similar to V I

j (i). Then the

recurrence relations are:

V M
j (i) = log

eMj
(xi)

qxi︸ ︷︷ ︸
qxi

:random

+ max





V M
j−1(i− 1) + log aMj−1Mj

V I
j−1(i− 1) + log aIj−1Mj

V D
j−1(i− 1) + log aDj−1Mj

(= emission + max(the last one + transition))

V M
j (i) = log

eMj
(xi)

qxi

+ max





V M
j (i− 1) + log aMjIj

V I
j (i− 1) + log aIjIj

V D
j (i− 1) + log aDjIj

(it is similar to state X in pair HMM that i of V M
j (i) is similar to i of X(i, j))

V M
j (i) = max





V M
j−1(i) + log aMj−1Dj

V I
j−1(i) + log aIj−1Dj

V D
j−1(i) + log aDj−1Dj

In a typical case, eMj
(xi) = aID = aDI = 0.

Since the beginning or end of sequence doesn’t match the first or the last

match state of the model, we could rename the Begin state as M0 and set

V M
0 (0) = 0. Similarly, we can collect possible paths ending in insert or delete

states by renaming the End state to ML+1 and using above relation to calculate

V M
L+1(n) as the final score.

Forward algorithm

We define variables FM
j (i), F I

j (i) and FD
j (i) for the partial full log-odds ratios,

21



corresponding to V M
j (i), V I

j (i) and V D
j (i). Then we can write:

FM
j (i) = log

eMj
(xi)

qxi

+ log[aMj−1Mj
exp(FM

j−1(i− 1))

+aIj−1Mj
exp(F I

j−1(i− 1)) + aDj−1Mj
exp(FD

j−1(i− 1))]

F I
j (i) = log

eIj
(xi)

qxi

+ log[aMjIj
exp(FM

j (i− 1))+

aIjIj
exp(F I

j (i− 1)) + aDjIj
exp(FD

j (i− 1))]

FD
j (i) = log[aMj−1Dj

exp(FM
j−1(i)) + aIj−1Dj

exp(F I
j−1(i))

+aDj−1Dj
exp(FD

j−1(i))]

Initialization and termination conditions are handled as for the Viterbi case,

with FM
0 (0) setting to 0. And log(ex + ey) can be performed efficiently in a

practical implementation. Assume we want to calculate r̃ = log(p + q) from

the log of the probabilities, p̃ = log p and q̃ = log q. The direct way is to do

r̃ = log(exp(p̃) + exp(q̃)). By pulling out p̃, we can write this as

r̃ = p̃ + log(1 + exp(q̃ − p̃)).

It is possible to approximate the function log(1 + exp(x)) by interpolation from

a table. For a reasonable level of accuracy, the table can actually by quite small,

assuming we always pull out the largest of p̃ and q̃, because exp(q̃ − p̃) rapidly

approaches zero for large (p̃− q̃).

3.2.4 Multiple alignment by profile HMM training

The goal of this section will introduce how to estimate the parameters in this

model and when we got new sequence how to use the model to align it. We use

simplest sentence to explain these as follows:

1. The model is initialized with estimates of transition probabilities and amino

acid composition for each match and insert state.

2. All possible paths through the model for generating each sequence in turn

are examined. This calculation provides a probability of the sequence, given

22



all possible paths through the model, and, from this value, the probability

of any particular path may be found. Another algorithm, the Baum-Welch

algorithm, then counts the number of times a particular state-to-state tran-

sition is used and a particular amino acid is required by a particular match

state to generate the corresponding sequence position.

3. A new version of the HMM is produced that uses the results found in step

2 to generate new transition probabilities and match-insert state composi-

tions.

4. Step 3 and 4 are repeated up to 10 more times until the parameters do not

change significantly.

5. The trained model is used to provide the most likely path for each sequence.

The Viterbi algorithm is used for this purpose.

6. The HMM may be used to search a sequence database for additional se-

quences that share the same sequence variation. Hence the sum of the

probabilities of all possible sequence alignments to the model is obtained.

These probabilities are calculated by the forward algorithm. This analysis

gives a type of distance score of the sequence from the model, thus provid-

ing an indication of how well a new sequence fits the model and whether

the sequence may be related to the sequences used to train the model.

23



Figure 3.3: A model (top) estimated form an alignment (bottom). The residues in the

shaded area of the alignment were treated as inserts. Emission probabilities are shown

as bars opposite the different amino acids for each match state and transition proba-

bilities are indicated by the thickness of the lines. The I → I transition probabilities

times 100 are shown in the insert states; Excerpt from [3].

24



Chapter 4

Phylogenetic trees

4.1 Background on the phylogenetic trees

Our materials come from these [3], [11] and [20]. The similarities of molecular

mechanisms of the organisms have been strongly suggested that all organisms

on Earth had a common ancestor. A phylogenetic analysis of a family of related

nucleic acid or protein sequences is a determination of how the family members

might have been derived during evolution. The evolutionary relationships among

the sequences are described by using a graph called a tree.

The tree is assumed to be binary here and has branches, just as in plants, with

the outer branches representing the currently existed sequences and the inner

branches representing common ancestor sequences. We use the general term

‘length’ or ‘branch length’ here, and represents this by the lengths of branches.

The branches are joined through nodes that represent relationship among current

and ancestor sequences. Finally, we will reach a main branch with a root. More

often, however, the phylogenetic tree is left without a root because we do not

care which species is the ultimate ancestor.

The goal of a phelogenetic analysis of nucleic acid or protein sequences is to

analyze the relationships among a group of sequences that can be aligned into

a multiple sequence alignment. Three methods-distance methods, maximum

25



parsimony, and maximum likelihood-are used for predicting such trees. We will

concentrate these in the next section.

4.2 Three kinds of phylogenetic trees

4.2.1 Distance methods

Distance methods are based on genetic distances between sequence pairs in a

multiple sequence alignment. The genetic distance between two sequences is the

fraction of aligned positions in which the sequence has been changed. Sequence

pairs that have the smallest distances are ‘neighbors’. On a tree, these sequences

share a node or common ancestor position and are each joined to that node by

a branch.

We begin with a clustering procedure called UPGMA. It works by clustering

the sequences, at each stage combining two clusters and at the same time creating

a new node on a tree. The tree can be imagined as being collected upwards, each

node being added above the others, and the edge lengths being determined by

the difference in the heights of the nodes at the top and bottom of an edge.

We defined the distance dij between two clusters Ci and Cj to be the average

distance between pairs of sequences from each cluster:

dij =
1

|Ci||Cj|
∑

p in Ci,q in Cj

dpq

where |Ci and |Cj| denote the number of sequences in the clusters i and j,

respectively. If Ck is the union of the two clusters Ci and Cj, i.e., Ck = Ci ∪Cj,

and if Cl is any other cluster, then:

dkl =
dil|Ci|+ djl|Cj|
|Ci|+ |Cj| (4.1)

26



Figure 4.1: A example of hoe UPGMA produces a rooted tree by successively clustering

sequences, in this case a set of five sequence whose distances can be represented by

points in the plane; Excerpt from [3].

27



Algorithm: UPGMA

1. Initialization:

Assign each sequence i to its own cluster Ci,

Define on leaf of T for each sequence, and place at height zero.

2. Iteration:

Determine the two clusters i, j for which dijis minimal. (If there are

several equidistant minimal pairs, pick one randomly.)

Define a new cluster k by Ck = Ci ∪ Cj, and define dkl for all l by (4.1).

Define a node k with daughter nodes i and j, and place it at height dij/2.

Add k to the current clusters and remove i and j.

3. Termination: When only two clusters i, j remain, place the root at height

dij/2.

4.2.2 Maximum parsimony

Maximum parsimony is one of the most widely used of all tree building algo-

rithms. It works by finding the tree of the observed sequences with a minimal

number of substitutions. Instead of building a tree, it assigns a cost to a given

tree and it is necessary to search through all topologies in order to identify the

‘best’ tree.

Parsimony treats each site independently. Hence we calculate the minimal

number of substitutions column by column. And then we sum the substitutions

for all columns. Given a example, there are four aligned nucleotide sequences:

x1: AAG

x2: AAA

x3: GGA

x4: AGA

28



There are three topologies of four sequences. The three topologies of the first

column of the multiple sequence alignment are shown as Figure 4.2. We can

see that the cost of the tree topologies of the first column is 1. By the similar

procedure, the cost of the tree topologies of the second column and third column

are shown as Figure 4.3 and Figure 4.4, respectively. And then we sum the cost

of all columns of the three topologies, respectively. We find out the maximal

parsimony of this multiple sequence alignment that is the first topology tree.

A

A

1

topology tree 1

G

A

A A

A

topology tree 2

A

A A

A

topology tree 3

A G

GA

A

x3

x4

x1

x2 x3x3

x1x1

x4x4

x2x2

A

1 1

A

Figure 4.2: The three topologies of the first column of the multiple sequence alignment

A

A

1

topology tree 1 G

A

A A

A

topology tree 2 G

A

A A

A

topology tree 3

A

G

G

G

2

G G

2

Figure 4.3: The three topologies of the second column of the multiple sequence align-

ment

G

A

A A

A

A

1

topology tree 1

G

A

A A

A

A

1

topology tree 2

G

A

A A

A

A

1
topology tree 3

Figure 4.4: The three topologies of the third column of the multiple sequence alignment

29



Fitch’s algorithm-step 1

1. Do a post-order (from leaves to root) traversal of tree.

2. Initialization: Set C = 0 and k = 2n− 1.

3. Recursion: To obtain the set Rk

If k is leaf node:

Set Rk = xk
u (xk

u is the character of the column u of the node k)

If k is not a leaf node:

Compute Ri, Rj for the daughter nodes i, j of k,

and set Rk = Ri ∩Rj if this intersection is no empty,

or else set Rk = Ri ∪Rj and increment C.

4. Minimal cost of tree = C.

Fitch’s algorithm-step 2

1. Do a pre-order (from root to leaves) traversal of tree.

2. Select state rj of internal node j with parent i

Set rj = ri if ri ∈ Rj,

or else set rj= arbitrary state ∈ Rj.

The weighted parsimony does not just count the number of substitutions but

adds costs S(a, b) for each substitution of a by b. The aim is now to minimize

this cost. When set S(a, a) to 0 for all a and set S(a, b) to 1 for all a 6= b. Let

Sk(a) denoted the minimal cost of the assignment of a to node k.

Weighted parsimony-step 1

1. Do a post-order (from leaves to root) traversal of tree.

2. Initialization: Set k = 2n− 1, the number of the root node.

30



3. Recursion: Compute Sk(a) for all a as follows:

If k is leaf node:

Set Sk(a) = 0 for a = xk
u, Sk(a) = ∞, otherwise.

If k is not a leaf node:

Compute Si(a), Sj(a) for all a at the daughter nodes i, j, and

define Sk(a) = minb(Si(a) + S(a, b)) + minb(Sj(a) + S(a, b)).

4. Termination: Minimal cost of tree = mina S2n−1(a).

Weighted parsimony-step 2

1. Do a pre-order (from root to leaves) traversal of tree.

2. Select minimal cost character for root.

3. For each internal node i, select character that produced minimal cost at

parent k.

4.2.3 Maximum likelihood

Parsimony can give misleading information. The rates of sequence change vary in

the different branches of a tree that are represented by the sequence data shown

in the left of Figure 4.5. These variations produce a range of branch lengths, with

long ones representing more extended periods of time and short ones representing

short times. Because in parsimony analysis rates of change along all branches of

the tree are assumed to be equal, the tree predicted by parsimony and shown in

the right of Figure 4.5 will not be correct. However the maximum likelihood can

avoid this problem.

31



Figure 4.5: Type of sequence variation that leads to an incorrect prediction by the

maximum parsimony method; Excerpt from [3].

Let us look at possible forms for the substitution probabilities P (b|a, t), for a

residue a having being substituted by a residue b over a branch length t. Given a

residue alphabet of size K, we can write these as a K ×K matrix that depends

on t, and which we denote by S(t):

S(t) =




P (A1|A1, t) P (A2|A1, t) . . . P (AK |A1, t)

P (A1|A2, t) P (A2|A2, t) . . . P (AK |A2, t)

. . . . . . . . . . . .

P (A1|AK , t) P (A2|AK , t) . . . P (AK |AK , t)




We assume the matrix is multiplicative in the sense that

S(t)S(s) = S(t + s)

for any tie lengths s or t. This is equivalent to saying that the substitution

probabilities satisfy

∑

b

P (a|b, t)P (b|c, s) = P (a|c, t + s)

for all a, c, s, and t.

One of models for evolutionary mutations is Jukes & Cantor [1969]. Jukes-

Cantor assumes equal rate of change:

32



R=

A C G T

A −3α α α α

C α −3α α α

G α α −3α α

T α α α −3α

For a short time period ε, we write:

S(ε) ∼= I + Rε =




1− 3α α α α

α 1− 3α α α

α α 1− 3α α

α α α 1− 3α




where I is the identity matrix with ones down the diagonal and zero elsewhere.

By multiplicatively,

S(t + s) = S(t)S(s) ∼= S(t)(I + Rε).

Hence

(S(t + s)− S(t))/ε ∼= S(t)R.

Leading to the linear differential equation:

S ′(t) ∼= S(t)R

We give S(t) the following form:

S(t) =




rt st st st

st rt st st

st st rt st

st st st rt




With the additional condition that the limit as t goes to infinity:

rt = st =
1

4

33



Hence we get the equations

ṙ = −3αr + 3αs,

ṡ = −αs + αr,

and yield the unique solution which is known as the Jukes-Cantor model:

rt = 1
4
(1 + 3e−4αt),

st = 1
4
(1− e−4αt).

The Jukes-Cantor model does not capture some important features of nu-

cleotide substitution. For instance, transitions are more common than transver-

sions. The transitions (between purine) are A ↔ G, C ↔ T . and the transver-

sions (between pyrimidine) are A ↔ T , A ↔ C, G ↔ T , G ↔ C. To obtain

these features, Kimura [1980] proposed a model with the rate matrix

R=

A C G T

A −2β − α β α β

C β −2β − α β α

G α β −2β − α β

T β α β −2β − α

By the similar procedure, we get

S(t) =




rt st ut st

st rt st ut

ut st rt st

st ut st rt




where

st = 1
4
(1− e−4βt),

ut = 1
4
(1 + e−4βt − 2e−2(α+β)t),

rt = 1− 2st − ut.

Just like the parsimony method, we only need to search over unrooted tree

topologies. Hence, two assumptions suffice which are reversibility and lacking of

34



memory. The reversibility is

P (b|a, t)P (a) = P (a|b, t)P (b)

, where P (a) denotes the probability of a occurring at the root of the tree, for

all a, b, and t. The lacking of memory is

P (c|b, ti + tj) =
∑

a

P (c|a, tj)P (a|b, ti).

Given the tree topology T and branch lengths t (we write t1 . . . compactly as

t), we can compute the probability of T with a specific set of ancestors assigned

to its nodes by multiplying all the evolutionary probabilities, one for each branch

of the tree. For example, for the tree shown in Figure 4.6 the probability would

be

P (x1, . . . , x5|T, t) = P (x5)P (x4|x5, t4)P (x3|x5, t3)P (x1|x4, t1)P (x2|x4, t2).

Figure 4.6: An example of a tree with three sequences; Excerpt from [3].

We are interested in the probability of observed sequences given tree and

branch lengths, we sum over all the possible ancestors.

P (x1, . . . , x3|T, t) =
∑

x4,x5

P (x1, . . . , x5|T, t).

35



We make some basic simplifying assumptions that every site of the given data

sequences can be treated as independent and that deletions and insertions do not

occur. Then this assumption implies

P (x1, . . . , x3|T, t) =
∏
u

P (x1
u, . . . , x

3
u|T, t)

=
∏
u

(
∑

x4
u,x5

u

P (x1
u, . . . , x

5
u|T, t)),

where u indexes columns in the alignment. There are many possible candidates

which we must to sum over. This can be done efficiently using a tree upward

traversal pass.

Let P (Lk|a) denote the probability of all leaves below node k given that the

residue at k is a. Then we calculate P (Lk|a) form the probabilities P (Li|b) and

P (Lj|c) for all b and c, where i and j are the daughter nodes of k. (Figure 4.7)

Figure 4.7: Labelling at a branch in a tree; Excerpt from [3].

Algorithm: Felsenstein’s algorithm for likelihood

1. Initialization: Set k = 2n− 1.

2. Recurrence: Compute P (Lk|a) for all a as follows:

If k is a leaf node:

Set P (Lk|a) = 1 if a = xk
u, P (Lk|a) = 0 if a 6= xk

u.

36



If k is not a leaf node:

Compute P (Li|b) and P (Lj|c) for all a at the daughter nodes i, j,

and set P (Lk|a) =
∑

b,c P (b|a, ti)P (Li|b)P (c|a, tj)P (Lj|c)

3. Termination: Likelihood at column u = P (x•u|T, t•) =
∑

a P (L2n−1|a)P (a)

where we write x1
u, . . . compactly as x•u. Then we compare all values for all

possible topology trees and all branch lengths and find out the maximum value

of these values.

37



Chapter 5

Multiple sequence alignment and

evolutionary HMM

Here we follow Holmes and Bruno’s paper [12]. They did multiple sequences

alignment under a given tree. Most sequence profiling tools which use sequence

weighting to correct for phylogenetic bias in the training set are a shortcut com-

pared to a full phylogenetic model and it may miss potentially important clues on

the sequence family. The phylogenetic context of mutation events is significant

in molecular evolution while an lack of mutation on short branches tell virtually

no information (Figure 5.1).

Figure 5.1: The phylogenetic context of mutation events is significant in molecular

evolution while an lack of mutation on short branches tell virtually no information;

Excerpt from [12].

38



As an improvement on weighted training, one may consider evolutionary mod-

els of biological sequences, such as profile hidden Markov models. Evolutionary

models give a joint distribution for all the sequences in a family at once, condi-

tioned on the tree that relates them. Thus correlations between related sequences

are built into the model. Holmes and Bruno did multiple sequences alignment

that allowed gaps.

5.1 The links model

A more gap-sensitive model was proposed by Thorne et al.(1991, 1992) [24] and

[25]. Their ‘links’ model is a birth-death process with immigration, another

canonical stochastic system. We simplest introduce the concept of the birth-

death process and you can refer to [6], [10],[15] and [21] for detail.

A birth-death process is a special type of Markov process. As the name

implies, birth-death processes were originally used to describe populations that

were increased by births and decreased by deaths. The birth-death processes

usually arise when there is a group of entities that are increased by births or

arrivals and decreased by deaths or departures. The birth-death processes are a

powerful tool to analyze queues. The birth-death process is a process in which

changes of state are only to adjacent states (Figure 5.2), i.e. the state space will

be {0, 1, 2, . . .}, and changes of state will always be from n to n+1 or n to n−1.

Figure 5.2: State diagram for a birth-death process; Excerpt from [6]

To describe the chain, we give birth rates λn, n = 0, 1, 2, . . . and death rates

µn, n = 1, 2, 3, . . .. If the population is currently n, then new individuals arrive

at rate λn and individuals leave at rate µn (note if the population is 0 there can

39



be no deaths, so µ0 = 0). If we let Xt denote the state of the chain at time t,

then

P{Xt+∆t = n|Xt = n} = 1− (µn + λn)∆t + o(∆t),

P{Xt+∆t = n|Xt = n− 1} = λn−1∆t + o(∆t),

P{Xt+∆t = n|Xt = n + 1} = µn+1∆t + o(∆t).

where o(∆t) represents some function that is much smaller than ∆t for ∆t small,

i.e.,

lim
∆t→0

o(∆t)

∆t
= 0.

Let Pn(t) = P{Xt = n}.

P{Xt+∆t = n} = P{Xt = n}P{Xt+∆t = n|Xt = n}
+P{Xt = n− 1}P{Xt+∆t = n|Xt = n− 1}
+P{Xt = n + 1}P{Xt+∆t = n|Xt = n + 1}.

And Ṗn(t) = lim∆t→0
1

∆t
(P{Xt+∆t = n} − P{Xt = n}). Therefore,

Ṗn(t) = µn+1Pn+1(t) + λn−1Pn−1(t)− (µn + λn)Pn(t).

with initial conditions,

P1(t = 0) = 1

Pn(t = 0) = 0 for n > 1

Return to our subject. At any instant, a single residue many spawn a new

child or it may die; the former (birth) event happens with rate λ, the latter

(death) with rate µ. Child residues are inserted adjacent to the parent residue

on the right-hand side. New residues are also injected into the sequence at

the left-hand end of the sequence with rate λ (the immigration of the classical

process; Thorne et al. ascribe this to an ‘immortal link’).

5.1.1 Model

Let us repeat the links model by Thorne et al.(1991, 1992) [24], [25]. Consider an

individual residue. Let pn(t) be the probability that, at time t, it has survived,

40



spawning n descendants (including itself, its children, its grandchildren and so

on). Since the insertion rate is λ = 1
n
λn and the deletion rate is µ = 1

n
µn, the

time-evolution of pn(t) is described by

ṗn = λ(n− 1)pn−1 + µ(n + 1)pn+1 − (µ + λ)npn.

with p1(t = 0) = 1, pn(t = 0) = 0 for n > 1, and taking pn(t) = 0 for n ≤
0 at all t.

The other eventuality is that, by time t, the residue has died leaving n de-

scendants. Call the probability of this event, qn(t). It evolves as follows:

q̇n =





λ(n− 1)qn−1 + µ(n + 1)qn+1 + µpn+1 − (λ + µ)nqn for n > 0

µ(q1 + p1) for n = 0

with qn(t = 0) = 0 for all n.

We must also consider descendants of the immortal link at the left-hand end

of the sequence. Let rn(t) be the probability that there are n such residues at

time t, then

ṙn =





λnrn−1 + µ(n + 1)rn+1 − λ(n + 1)rn + µnrn for n > 0

µr1 − λr0 for n = 0

The solutions to the above equations are

pn = αβn−1(1− β)

qn = (1− α)(1− γ) for n = 0

= (1− α)γβn−1(1− β) for n > 0

rn = βn(1− β)

where

α(t) = e−µt

(5.1)
β(t) =

λ(1− e(λ−µ)t)

µ− λe(λ−µ)t

γ(t) = 1− µ(1− e(λ−µ)t)

(1− e−µt)(µ− λe(λ−µ)t)

41



Conceptually, α is the probability of ancestral residue survival, β is the prob-

ability of more insertions given one or more extant descendants and γ is the

probability of insertions given that the ancestral residue did not survive.

5.2 The link model as a pair HMM

In the 2.1 section, we introduced what is a pair HMM. Here, we will combine the

link model and a pair HMM. We will introduce ‘null’ (non-emitting) states to

simplify the model. The pair HMM for the link model is shown in Figure 5.3 (the

tree on which this model is based is shown in Figure 5.4). The central recurrent

loop of this model uses all three types of state and describes the fate of an

individual ancestral residue. Either the residue lives (math state) or dies (delete

state). In each case it spawns a geometrically distributed number of ancestor

residues (insert state) although the geometric distribution is subtly altered if the

ancestor dies (the match → insert and delete → insert transitions have different

probabilities).

Note that a rough examination of Figure 5.3 reveals nod direct delete →
delete transition. This is because a deleted ancestral link may have given birth to

orphaned descendant links. If transitions via null states are considered, however,

there is a direct self-transition from the delete state with probability λ
µ
(1−γ)(1−

α).

Inference of the alignment of the two sequences, π, employs dynamic pro-

gramming. (Recall that π describes the evolutionary relationship between the

sequences and π is taken to be the path through the Markov model). The op-

timal value of π may be obtained using the Viterbi algorithm; alternatively, the

Forward algorithm can be used to calculate the sum-over-alignments likelihood

P (D|A) =
∑

π P (D|A, π) (A for ancestor and D for descendant) or to sample

an alignment from the posterior distribution P (π, d|A). These algorithms are

described in previous sections.

42



Figure 5.3: The pair HMM for the links model on the single-branch tree shown in

Figure 5.4. Null states are shown as small circles. The parameters α, β and γ are

related to the branch length t as described in equation (5.1); Excerpt from [12].

Figure 5.4: A single-branch tree for an ancestor (X) and a descendant (Y ). The

branch length is t; Excerpt from [12].

5.2.1 From pair HMMs to multiple HMMs

A multiple alignment is a composition of pairwise branch alignments. Given

an evolutionary tree relating N sequences (including the sequences at internal

tree nodes), one can construct a composite multiple HMM analogous to the pair

HMM shown in Figure 5.3 by considering the ancestor-descendant relationship

of every branch. For example, the three-node tree in Figure 5.5 has the HMM

shown in Figure 5.6, and the four-node tree in Figure 5.7 has the HMM shown

in Figure 5.8. Note how the HMM structure of Figure 5.3 is inset in Figure 5.6;

likewise, Figure 5.6 is inset in Figure 5.8.

43



Figure 5.5: A simple binary tree. The root node is X and the two children are Y and

Z; Excerpt from [12].

It is useful to image composite multiple HMMs and their relationship to the

factorization of equation

P ({π}, S|T, Θ) = P (root|Θ)
∏

b

P (πb, Db|Ab, tb, Θ) (5.2)

where S is a set included all sequences at internal nodes of the tree. There is

an algorithm to construct a composite multiple HMM for any evolutionary pair

HMM and tree T , such that the likelihood function for this multiple HMM is

equal to P ({π}, S|T, Θ) of equation (5.2). The multiple alignment represents the

complete evolutionary history of all the sequence, whereas the pairwise align-

ments represent the individual historical accounts of each branch.

By constraining the pairwise alignments along subsets of all tree branches

(and the inferred sequences at subsets of all tree nodes), Holmes and Bruno

provide a Gibbs sampler for the likelihood function described in equation (5.2).

Progressive alignment and refinement algorithms are obtained by replacing the

construct ‘sample an alignment π using the Forward algorithm’ with ‘find the

optimal alignment π using the Viterbi algorithm’ in the Gibbs sampler code.

For their alignment algorithm, they need a well-defined and decided way of

decomposing a multiple alignment into a set of pairwise branch alignments for

neighboring nodes. More generally, it is useful to obtain the pairwise alignment of

any two nodes of the tree not just neighboring nodes. Conversely, they need a way

of composing a multiple alignment from a complete set of pairwise alignments.

44



Figure 5.6: The multiple HMM for the binary tree of Figure 5.5. Note that α1 =

α(t1), α2 = α(t2), etc., according with equation (5.1); Excerpt from [12].

A generalization of this task is to find the optimal multiple alignment given

an incomplete pairwise alignment set. The algorithm to do this will not be

described in full, but the essential rule is as follows: residues Xi and Yj in a

multiple alignment containing sequences X and Y are considered to be aligned

if and only if both of the following conditions hold:

1. the residues Xi and Yj are in the same column;

2. the column contains no gap characters for any of the sequences intermediate

to X and Y on the tree.

The ‘intermediate’ sequences include any sequences in the lineages A → X or

45



A → Y , where A is the most recent common ancestor of X and Y . This sentence

stipulates that residue deletion followed by re-insertion at the same position does

not constitute a direct evolutionary relationship under this model and there

should be no correlation between X and Y . Note that Figure 5.8 contains no

states that emit both W s and Y s without emitting Xs; this is because X is

intermediate to W and Y in Figure 5.7.

Figure 5.7: A tree for a node (X) with a parent (W ) and two children (Y and Z);

Excerpt from [12].

5.2.2 Eliminating internal nodes

Often, the actual inference of ancestral sequence is unnecessary. In Bayesian

theory, these sequences are ‘missing data’ and the correct thing to do would be to

sum over them of the likelihood function. Unfortunately, summing over the indel

histories of these sequences means giving up the branch-to-branch independence

that allows them to conveniently factorize the likelihood function as in equation

(5.2).

Despite this problem, they could sum over all substitution histories for a given

multiple alignment using the post-order traversal algorithm of Felsenstein which

we introduce in the section 3.2.3. And the scores of the Felsenstein algorithm

are a probabilistic summing over over all residues.

In MCMC analysis, troublesome computations like this problem are avoided

by sampling extensively from the posterior distribution. This is the approach

taken by Handel.(You can download the source code at

46



Figure 5.8: The multiple HMM for the tree of Figure 5.7. Note that α1 = α(t1), α2 =

α(t2), α3 = α(t3), etc., according with equation (5.1); Excerpt from [12].

http://sourceforge.net/projects/dart/, and you can see directly the code on the

web site at http://b-src.cbrc.jp/markup/dart).

5.3 Gibbs sampling method

Before we introduce the algorithm, we see what Gibbs sampling method is and

you can refer to [2], [3], [9] and [13] for detail. Markov chain Monte Carlo

(MCMC) methodology provides huge range for realistic statistical modelling.

MCMC is essentially Monte Carlo integration using Markov chains. Bayesians

and frequentists need to integrate over possibly high-dimensional probability

distributions to make inference about model parameters or to make predictions.

47



Bayesians need to integrate over the posterior distribution of model parameters

given the data (i.e. the posterior distribution is P (model parameters|data)). Fre-

quentists need to integrate over the distribution of observables given parameter

values (i.e. the frequentist is P (data|model parameters)). Monte Carlo integra-

tion draws samples from the required distribution (is called the proposal distri-

bution) and then forms sample averages to approximate expectations. MCMC

draws these samples by running a cleverly constructed Markov chain for a long

time. Metropolis and Gibbs samplers are included in MCMC.

The Metropolis algorithm (Metropolis et al., 1953) [19] considers only sym-

metric proposals, having the form q(Y |X) = q(X|Y ) for all X and Y . Note

that the proposal distribution may depend on the current point Xt. For exam-

ple, when X is continuous, q(.|X) might be a multivariate normal distribution

with mean X. At each time t, the next state Xt+1 is chosen by first sampling a

candidate point Y from a proposal distribution q(.|Xt).

The candidate point Y is then accepted with probability α(Xt, Y ) where

α(X, Y ) = min(1,
π(Y )

π(X)
)

where π(.) is the distribution of data. If the candidate point is accepted, the

next state becomes Xt+1 = Y . If the candidate is rejected, the chain does not

move, i.e. Xt+1 = Xt.

Algorithm

1. Initialize X0; set t = 0.

2. Repeat:

(1) Sample a point Y from q(.|Xt).

(2) Sample a Uniform(0,1) random variable U .

(3) If U ≤ α(Xt, Y ) set Xt+1 = Y

otherwise set Xt+1 = Xt.

(4) Increment t.

48



The ‘Gibbs sampler’ is a special case of Metropolis algorithm. The ‘Gibbs

sampler’ was given its name by Geman and Geman (1984) [8], who used it

for analysing Gibbs distributions on lattices. Moreover, the same method was

already in use in statistical physics and was known there as the heat bath algo-

rithm. To date, most statistical applications of MCMC have used Gibbs sam-

pling.

For Gibbs sampler, the proposal distribution is

P (Y |x1, . . . , xi−1, xi+1, . . . , xN)

for all i, cycling repeatedly through i = 1, . . . , N . The candidate point Y is then

accepted with probability α(Xt, Y ) where

α(X,Y ) = min(1,
π(Y )q(X|Y )

π(X)q(Y |X)
)

where π(.) is the distribution of data. If the candidate point is accepted, the

next state becomes Xt+1 = Y . If the candidate is rejected, the chain does not

move, i.e. Xt+1 = Xt.

Provided that the process is ergodic, Metropolis and Gibbs sampling will

surely converge to a stationary distribution. Once a sample from the stationary

distribution has been obtained, all subsequent samples will be from that distri-

bution. When the distribution of X converge to a stationary distribution, X is

ergodic. The chain needs to satisfy three important properties, the distribution

of X converge to a stationary distribution.

1. irreducible: from all starting points, the Markov chain can reach any non-

empty set with positive probability, in some number of iterations. In other

words, if for all i, j, there exists a t > 0 such that Pij(t) > 0 where Pij(t)

is the transition probability, Pij(t) = P (Xt = j|X0 = i).

2. aperiodic: this stop the Markov chain from oscillating between different

sets of states in a regular periodic movement. In other words, if for some

(and hence for all) i, greatest common divider t > 0 : Pii(t) > 0=1.

49



3. positive recurrent: the initial value X0 is sampled from a stationary distri-

bution, then all subsequent iterates will also distributed according to the

stationary distribution. In other words, the existence of a stationary dis-

tribution for X, that is there exists π(.) such that
∑

i

= π(i)Pij(t) = π(j)

for all j and t ≥ 0.

5.4 Algorithm: under a given tree

The most popular kind of multiple alignment algorithms is progressive alignment,

whereby profiles for missing parents are estimated by aligning relative sequences

on a post-order traversal of the underlying binary tree. A third strategy is to

sample from a population of alignments, exploring suboptimal alignments in

anticipation that short-term sacrifices will yield long-term improvements.

Three types of ‘move’ are used to explore alignment space. Holmes and Bruno

first discuss the motivation for each move, and then describe the move sligntly

alignment more formally.

The first move mirrors the sibling alignment step of progressive alignment

(building a ‘guide tree’). Given two relative sequences (choosing from the ‘guide

tree’), their alignment is sampled. The length of the parent sequence is implicitly

sampled at this stage as well.

• Move #1: parent sampling

– The goal is to align relative nodes Y and Z and simultaneously infer

their parent node X (see Figure 5.5).

– Construct the pair HMM for X, Y and Z.

– Realign the alignment of Y and Z using the Forward algorithm. That

is, we calculate the value of
V E(n,m)(Viterbi Aigorithm)

fE(n,m)(Forward algorithm)
.

– Deduce the implicit alignments XY and XZ and the sequence X.

50



The second move mirrors the branch alignment step of refined alignment.

Given a branch, the pairwise alignment for that parent-child sequence pair is re-

sampled, by applying the Forward algorithm to Figure 5.3. This move resamples

alignments inferred during the progressive phase.

• Move #2: branch sampling

– The goal is to realign the adjacent nodes X and Y (see Figure 5.4).

– Fix all pairwise branch alignment except branch XY (use the Gibbs

sampler method) and construct the pair HMM for X and Y .

– Realign the alignment of X and Y using the Forward algorithm. That

is, we calculate the value of
V E(n,m)(Viterbi Aigorithm)

fE(n,m)(Forward algorithm)
.

The third move completes the ergodicity requirement. Given any internal

node, the sequence at that node is resampled by inserting or deleting residues

without disturbing the pairwise alignment of adjacent nodes. This move resam-

ples parent sequence lengths inferred during the progressing phase.

• Move #3: node sampling

– The goal is to resample the sequence at internal node X.

– Let the parent of X be W . Let the children of X be Y and Z (see Figure

5.7).

– Fix all pairwise branch alignment except branch WX, XY and XZ (use

the Gibbs sampler method). Construct the multiple HMM for X and

its neighbors. (see Figure 5.8.)

– Realign the sequence X, conditioned on the relative alignment of W , Y

and Z. That is, we calculate the value of
V E(n,m)(Viterbi Aigorithm)

fE(n,m)(Forward algorithm)
.

(In other words, all variants of the original multiple alignment hav-

ing either a residue or a gap character at each column of row X are

considered.)

51



Chapter 6

Tree HMM

Our materials come from Mitchison’s paper [18]. Carrying out simultaneous tree-

building and alignment of sequence data is a difficult computational task. The

methods currently available are either limited to a few sequences or restricted

to highly simplified models of alignment and phylogeny. A method given by

Mitchison is to overcome these limitations by Bayesian sampling of trees and

alignments simultaneously. The method uses a standard substitution matrix

model for residues together with a hidden Markov model structure that allows

affine gap penalties.

6.1 Modeling of phylogeny and alignment: The

Tree-HMM

Alignment and phylogeny can be treated simultaneously by combining an align-

ment model, a profile-HMM, with a probabilistic model of phylogeny. The re-

sulting model is called a tree-HMM. Here we follow Mitchison’ paper [18] and he

stressed the idea of evolutionary changes of paths through an HMM.

The basic idea of a tree-HMM is that a path through an HMM, which rep-

resents an alignment of a sequence, can change as a result of evolution and that

52



the probability of such changes is given by substitution probabilities. With the

tree-HMM, Mitchison is no longer concerned with emission and transition proba-

bilities, as in a standard HMM described in chapter 3, but with the probabilities

of an emission or transition being substituted by another emission or transition.

The HMM in question can have any architecture. Here a profile-HMM struc-

ture is assumed, with only match and delete states (Figure 6.1), as there are

certain complications in the use of the insert states present in the original profile-

HMM. Insertions are still allowed, however, even though they are not represented

by a special state. Insertions occur when a sequence uses a match state at a po-

sition where its ancestor uses a delete state.

Figure 6.1: An HMM-profile architecture that provides a convenient structure for a

tree-HMM. It is simpler than the standard version, having no insert states; Excerpt

from [18].

Consider the simplest possible evolutionary tree, T , consisting of a single edge

of length d, with a leaf node at one end and a root node at the other. Let the

sequence of the leaf be x and that at the y. The tree means that x has evolved

from y over an evolutionary distance d. Figure 6.2 shows an example of what

these paths might look like for a model of length 4. Observe that the paths

can differ in two ways: they can use different transitions and states, and they

can emit different residues (Mitchison included emissions in the definition of a

‘path’).

Consider now the various types of differences between paths. At the M

state at position 1, x emits an A, whereas y emits a V . Mitchison assigned a

probability Pd(A|V ) to this substitution and assume henceforth that this is the

53



Figure 6.2: A short tree-HMM for the simple tree with two nodes shown above. Note

that there is only a match-transition tree at the BEGIN state because it is treated as a

dummy match state that emits no residue; Excerpt from [18].

familiar Dayhoff matrix element for a distance of d PAMs. Then we have

P (A, V |T ) = ρ(V )Pd(A|V ),

where ρ is the prior for emissions. P (A, V |T ) will be one of the terms whose

product defines P (x, y|T ).

In going form position 1 to position 2, y undergoes a transition from state

M to M , whereas x undergoes a transition from state M to D. We use the

compact notation ‘MM ’ for the former transition and ‘MD’ for the later. The

substitution of MM by MD can be treated in an analogous way to substitution

54



of emitted residues, its probability being denoted Pd(MD|MM). The probability

P (MD, MM |T ), which provides another factor in P (x, y|T ), is

P (MD, MM |T ) = ρ(MM)Pd(MD|MM),

where ρ(MM) is the prior probability for MM . There are analogous substitution

probabilities for the delete state. At position 3, x undergoes a DM transition

and y a DD. Then

P (DM,DD|T ) = ρ(DD)Pd(DM |DD).

In positions 2 and 4 of the model they use different states. Then x cannot be

regarded as evolving from y. Mitchison consider x having the missing ancestral

and y having the missing descendent. Mitchison assume that their emission or

transitions in the course of the separate paths they follow should be treated as

independent of each other. As an attempt to capture this, Mitchison adopt a

rule of replacing the missing ancestral or descendent sequences at such positions

by sum over all possible emissions or transitions and use the symbol ‘*’ to denote

this sum.

At position 2, for instance, the foregoing rule means that the delete-transition

tree has DD at the leaf and a * at the root, so

P (DD, ∗|T ) = ρ(DM)Pd(DD|DM) + ρ(DD)Pd(DD|DD)

= ρ(DD)(Pd(DD|DD) + Pd(DM |DD))

(the substitution probability is reversible)

= ρ(DD)

(6.1)

Thus one gets the prior for DD. Similarly, at position 2 has a * at the leaf and

MD at the root, so

P (∗,MD|T ) = ρ(MD)Pd(MM |MD) + ρ(MD)Pd(MD|MD)

= ρ(MD)(Pd(MD|MD) + Pd(DM |MD))

(the substitution probability is reversible)

= ρ(MD)

(6.2)

55



giving the prior probability of y’s transition MD. Finally, note that at positions

where a state is not used by any sequence, for instance, the D at position 1, the

tree has *’s at both leaf and root, and the probability P (∗, ∗|T ) is 1.

Then we can represent both substitutions and priors for transition in a 4× 4

matrix, corresponding to the four transitions. However, this is not a standard

substitution matrix because the probabilities in a row do not sum to one. Instead,

it breaks up into four 2 × 2 blocks, determined by the state (match or delete)

that the ancestral and descendant sequences begin their transition from:

MM MD DM DD

MM Pd(MM |MM) Pd(MD|MM) ρ(DM) ρ(DD)

MD Pd(MM |MD) Pd(MD|MD) ρ(DM) ρ(DD)

DM ρ(MM) ρ(MD) Pd(DM |DM) Pd(DD|DM)

DD ρ(MM) ρ(MD) Pd(DD|DM) Pd(DD|DD)

And Mitchison called

 Pd(MM |MM) Pd(MD|MM)

Pd(MM |MD) Pd(MD|MD)




as the match-transition matrix family and

 Pd(DM |DM) Pd(DD|DM)

Pd(DD|DM) Pd(DD|DD)




as the delete-transition matrix family.

Multiplying together the probabilities of all transitions and emissions in the

paths x, y gives P (x, y|T ). To express this formally, let Mk(xi) denote the

transition from the match state used by sequence xi at position k; a * otherwise.

Similarly, let Ek(xi) be the emission, and Dk(xi) the transition from the delete

state, at k, either being a * if the relative state is not used. Then we have

P (x, y|T ) =
∏

k

P (Mk(x),Mk(y)|T )P (Dk(x), Dk(y)|T )P (Ek(x), Ek(y)|T )

(6.3)

56



Since the root sequence y is generally unknown, to get the probability of the

observed sequence, P (x|T ), we must sum over all y. This means summing over

all possible paths, including all possible emissions, for y. It is easy to see that

this implies

P (x|T ) =
∏

k

P (Mk(x)|T )P (Dk(x)|T )P (Ek(x)|T ) (6.4)

where P (Ek(x)|T ) is the probability for the observed emission at position k ob-

tained by summing over all possible root residues, i.e., emissions of y. P (Mk(x)|T )

and P (Dk(x)|T ) are similarly defined by summing over all root values of rele-

vant transitions. Equation (6.3) implies Equation (6.4) because the sums over

possible states and emissions of y distribute over the product. The * rule means

that, when y uses an M state, all transitions from D are summed over, so all

combinations of the terms in (6.4) occur.

Now it will be extended to any tree T with n leaves (Figure 6.3). Label the

nodes i = 1, . . . , 2n− 1 with i = 1, . . . , n the leaves and 2n− 1 the root. Let di

be the length of the edge that has node i at the bottom, and let α(i) denote the

number of the node at the top of that edge. Suppose that the leaf sequences are

x1, . . . , xn and the sequences at ancestral nodes are yn+1, . . . , y2n−1. Let L be E,

M or D, the probability of the specific assignments to all its nodes is given by

P (Lk(x1), . . . , L
k(xn), Lk(yn+1), . . . , L

k(y2n−1)|T )

= ρ(Lk(y2n−1))
n∏

i=1

Pdi
(Lk(xi)|Lk(yα(i)))

2n−2∏
i=n+1

Pdi
(Lk(yi)|Lk(yα(i)))

the product being taken over all edges. The analogue of (6.3) is then

P (x1, . . . , xn, yn+1, . . . , y2n−1)

=
∏
L

∏

k

P (Lk(x1), . . . , L
k(xn), Lk(yn+1), . . . , L

k(y2n−1)|T )

As before, the sum over all nonleaf nodes, over all yi, distributes over the product,

giving

P (x1, . . . , xn) =
∏
L

∏

k

P (Lk(x1), . . . , L
k(xn)|T )

57



Figure 6.3: A tree-HMM has five leaves. To compute the probabilities of data con-

ditioned on the trees, the standard Neyman/Felsenstein algorithm is used, with the

additional rule that all possible residues are summed over at a leaf with a *; Excerpt

from [18].

58



The existence of a fixed alignment means that the path through the tree-

HMM for each sequence is fixed; the tree parameters T and di can then be

varied to maximize the likelihood or sample from the posterior. If we have a

number of data sets, each consisting of four globin sequences. Then the choosing

quadruples have the effect of making one of the three possible tree topologies

more likely than the other two.

To define the tree-HMM used for these data sets, we need to specify the

substitution matrix families and the priors. The PAM family was used for sub-

stitution of emissions and its equilibrium probabilities for large values of d were

used as the emission prior. The match-transition matrix was assumed to have

the following form:

MM MD

MM a + (1− a)e−rd (1− a)(1− e−rd)

MD a− ae−rd 1− a + ae−rd

where d is the evolutionary distance, r ≥ 0 a rate constant, and 0 ≤ a ≤ 1

determines the equilibrium probabilities for large d. If one takes the priors to be

the equilibrium probabilities, one gets ρ(MM) = a, ρ(MD) = 1−a. This matrix

family is reversible and multiplicative.

These can be estimated by maximum-likelihood from a given data set, choos-

ing a and r to maximize the product of all substitution probabilities arising in

the data set. The delete-transition matrix was assumed to have a similar form,

though it was not constrained to have the same parameters as match-transition

matrix.

6.2 Sampling from alignments and trees

We return to the use of tree-HMMs as tools for simultaneous sampling of trees

and alignments. There are two procedures to be used. To sample alignments, the

59



first procedure is leaf-sampling used the Gibbs sampler method (This method

is described in chapter 5). The second is inter-nodes-sampling. All steps are

carried out under a given tree.

A tree-HMM at leaf node k is obtained by computing the probability

P (y at leaf k|{xi} − xk)

of emissions or transitions y at k given the residues or transitions at all the leaves

other than k. These probabilities supply the emission or transition probabilities

for the HMM-profile that is used to sample alignments of sequence xk at leaf k.

In the leaf sampling, it derives a guide tree with the correct leaves alignment.

Now we do not change these leaves alignment and we will resample the internal

nodes. The child sequences of internal node m are realigned to the ancestor

sequences of internal node m. To give freedom for realignment, a special type of

tree is treated as a ‘blank’; this is the tree all of whole leaves use D states.

A blank tree can inserted or removed from the alignments, provided that the

transitions are modified appropriately. For instance, if a leaf sequence uses M at

positions k and k+1, so it makes an MM transitions at k. Inserting a blank tree

at position k + 1 means that the leaf uses M at k, D at k + 1, and M at k + 2.

Hence the leaf sequence makes an MD transition at k and a DM transition at

k + 1.

Standard algorithms (Felsentein 1981; Mitchison and Durbin 1995) enable one

to compute the probability P ↓(y) of emissions or transitions in the tree below m

given y at node m, i.e.,

P ↓(y) = P ({Lk(xui
)}

ui below m
|y at node m,T )

where k is each position below node m. Similarly, one can compute the proba-

bility of y at node m given the tree above m, i.e.,

P ↑(y) = P (y at node m|{Lk(xui
)}

ui above m
, T )

60



Summing over the product of these distributions gives

∑
y

P ↑(y)P ↓(y) =
P ({Lk(xi)}|T )

P ({Lk(xui
)}

ui above m
|T )

(6.5)

using the fact that the sequence above and below m are independent. The

probability is similar to the proposal distribution in the Gibbs sampler method.

If we are aligning the part of the tree below node m to the rest of the tree,

P ({Lk(xui
)}

ui above m
|T )

remains fixed, and this constant factor has no effect on the sampling. With the

distinction that the probability is evaluated by the sum in (6.5), and that the

blank tree replaces the use of the D state, the sampling procedure is identical to

that for the leaves.

After these preliminaries, we were ready to sample from tree parameters as

well as alignments. This was achieved by randomly choosing either alignment

sampling or tree sampling, the latter using the method of Mau et al.(1996) [16],

with a flat prior on edge length.

The first one uses a representation of a tree that they call a traversal profile.

In the traversal profile, a node is placed at a height corresponding to the sum

of the edge lengths from the root to that node. Then beginning at the leftmost

leaf, we traverse the tree depth first from left to right and assigning numbers

incrementally according to the x-coordinate. (see the top of Figure 6.4). The

root is taken to be the highest node. The root is taken to be the highest node.

Edges are then drawn to the highest nodes to the left and the right of the root.

The process stops when a leaf is reached (the leaves have been marked as hollow

circles in the Figure 6.4)

Mau et al. take the traversal profile for the current tree and shifting the

positions of nodes up and down by amount chosen from a uniform distribution

in some interval [x− δ, x + δ], where x is the height of the node. Whenever the

relative heights of nodes are switched a new topology is produced (Figure 6.5).

61



Figure 6.4: Above: an example of a tree with its nodes numbered in the order of the

traversal profile. Below: Reconstruction of the tree from the traversal profile; come

from [3]; Excerpt from [3].

When a molecular clock is assumed, the leaf nodes all lie at the same height and

shifting the positions of nodes is reflected upward.

Without a molecular clock, leaf nodes are always leaf nodes. This can be

achieved by two proposal mechanisms. The first displaces leaf nodes uniformly

in some interval, but if the displacement increases the leaf node’s height above

that of the lower of the two neighboring nonleaf nodes, the displacement is re-

flected downward. The second displaces nonleaf nodes, but now they are reflected

upward if they cross the level of either of the two neighboring leaf nodes.

62



Figure 6.5: The two parts of the proposal mechanism are changes in the height of the

nodes in the profile; come from [3]; Excerpt from [3].

Algorithm: carrying out tree-building and multiple sequences align-

ment simultaneously

1. tree-sampling : using the method of Mau et al. (1996)

2. multiple sequences alignment : using the tree that is chosen by 1 to do

multiple sequences alignment.

3. repeat 1 and 2 until some threshold is achieved.

To assess the effectiveness of sampling, Mitchison defined the overlap of an

alignment to be the fraction of individual residue pairs that were correctly aligned

according to the Pfam database seed alignments of the globins (Sonnhammer et

al. 1997; Bashford et al. 1987) [22] and [1].

The mean overlap is the average of this fraction over the sampling run.

The mean overlap of alignments produced by Mitchison’s sampling method was

compared to that obtained with an efficient alignment program, CLUSTAL W

63



Figure 6.6: This shows the degree to which algorithm-generated alignments of four

globins agree with those in the Pfam database. The y axis gives the mean overlap

for 25 sets of four globins. For each set, the mean overlap is given for an alignment

generated by CLUSTAL W (gray bars). The black bars show the mean overlap for

alignments generated by simultaneous sampling of trees and alignments, using the tree-

HMM; Excerpt from [18].

(Thompson et al. 1994) [23]. The latter produced alignments from the same

globin data sets whose overlap varied between 0.34 and 0.83 (Figure 6.4). Note

the low values; some of these data sets were not easy to align. In fact, align-

ment of small numbers of sequences is often particularly troublesome because

of the scant statistical information they provide (Eddy 1995) [4], and practical

experience suggests that profile-HHMs perform poorly at this task compared to

CLUSTAL W. Mitchison’s sampling procedure did only a little less well than

CLUSTAL W judged by mean overlap (Figure 6.4), achieving an average value

of 0.615 on 25 data sets, compared to 0.631 for CLUSTAL W. For compari-

son, alignment with a profile-HMM, using S. Eddy’s package hmmer (simulated

annealing with hmmer version 1.8.4; http://hmmer.wustl.edu/) gave a mean

64



overlap of 0.257.

6.3 Conclusion and discussion

The tree-HMM can be used in several ways.

1. it can be used for standard phylogenetic inference, given an aligned set of

sequences, but with the advantage that it treats insertions and deletions

more realistically compared to simple character substitution models of gaps.

2. the tree-HMM can be used as an alignment tool that assumes a specific

phylogeny. Lake (1991) [14] has pointed out that there is a danger in using

certain alignment algorithms before carrying out a phylogenetic analysis,

because these alignment algorithms assume a tree.

3. it is possible to combine phylogeny with alignment, by means of sampling.

Even so, it suffers from some lack of realism, because when a group of adjacent

bases is deleted, the bases retain information about the base sequence, and if they

are inserted again, there will be some memory of the original base sequence.

Holmes and Bruno (2001) [12] point out that it is also possible that when a

series of bases is reinserted there may be ‘memory’ of an internal gap that was

once there and that now returns with them. (Excerpt from [7])

The interpretation the tree-HMM give to these events may often be biologi-

cally incorrect. Once a deletion has occurred, a subsequent insertion may have

a different structural role. A more realistic model would assign new states to in-

sertions, which is what the model of Thorne et al. (1991) [24] does. In Thorne’s

model, deletion followed by insertion using the same states could not occur, and

the tree-HMM with this structure would behave more correctly as an evolution-

ary model. There is clearly range for devising new tree-HMM architectures and

reason to hope that they will provide useful tools for modeling the evolution of

sequence families.

65



References

[1] Bashford, D., Chothia, C., Lesk, A. M. 1987 Determinants of a protein fold:

Unique features of the globin amino acid sequence. J Mol Biol 196:199�216

[2] Brémaud, P. 1999 Markov Chains: Gibbs Fields, Monte Carlo Simulation,

and Queues. Springer-Verlag New York, Inc.

[3] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. 1998 Biological sequence

analysis: Probabilistic models of proteins and nucleic acids Cambridge Uni-

versity Press

[4] Eddy, SR 1995 Multiple alignment using hidden Markov models. In: Rawl-

ings C, Clark D, Altman R, Hunter L, Lengauer T, Wodak S (eds) Pro-

ceedings of the Third International Conference on Intelligent Systems for

Molecular Biology. AAAI Press, Menlo Park, CA, pp 114�120.

[5] Eddy, S. R. 1996 Hidden Markov models current opinion in structural biol-

ogy, 6:361-365

[6] Feldman, R. M. and Ciriaco Valdez-Flores 1996 Applied Probability &

Stochastic Processes. PWS Publishing Company, a division of International

Thomson Publishing Inc.

[7] Felsenstein, J. 2004 Inferring Phylogenies Ainauer Associates, Inc.

66



[8] Geman, S. and Geman, D. 1984 Stochastic relaxation, Gibbs distributions

and the Bayesian restoration of images. IEEE Trans. Pattn. Anal. Mach.

Intel. 6: 721-741.

[9] Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. 1996 Markov Chain

Monte Carlo In Practice Chapman & Hall

[10] Grassmann, W. K. 1981 Stochastic systems for Management. Elsevier North

Holland, Inc.

[11] Gusfield, D. 1997 Algorithms on Strings, Trees, and Sequences: computer

science and computational biology. Cambridge University Press

[12] Holmes, I and Bruno, W. J. 2001 Evolutionary HMMs: a Bayesian approach

to multiple alignment. Bioinformatices Vol. 17 no. 9 2001 Pages 803-802

[13] Huelsenbeck, J. P. MrBayes: A program for the Bayesian inference of

phylogeny Department of Biology, University of Rochester, Rochester, NY

14627, U.S.A

[14] Lake, J. A 1991 The order of sequence alignment can bias the selection of

tree topology. Mol Biol Evol 8:378�385.

[15] Lawler, G. F. 1995 Introduction to Stochastic Processes Chapman & Hall

[16] Mau, B., Newton, M. A., Larget, B. 1996 Bayesian phylogenetic inference

via Markov chain Monte Carlo methods, Technical Report No. 961. Statistics

Department, University of Wisconsin-Madison.

[17] Mitchison, G. J. and Durbin R . M. 1995 Tree-based maximal likelihood

substitution matrices and hidden Markov Models. J Mol Evol 41:1139-1151.

[18] Mitchison, G. J. 1999 A probabilistic Treatment of Phylogeney and Sequence

Alignemet. Jouranl of Molecular Evolution J Mol Evol 49:11-22 Spronger-

Verlag New York Inc.

67



[19] Metropolis, N., Roesenbluth, A. W., Roesenbluth, M. N., Teller, A. H. and

Teller, E. 1953 Equations of state calculations by fast computing machine.

J. Chem. Phys., 21: 1087-1091.

[20] Mount, D. W. 2004 Bioinformatics: Sequence and Genome Analysis. Cold

Spring Harbor Laboratory Press

[21] Papoulis, A. 1984 Porbability, Random Variables, and Stochastic Processes.

McHraw-Hill Inc.

[22] Sonnhammer, E., Eddy, S. R., Durbin, R. M. 1997 A comprehensive

database of protein families based on seed alignments. Proteins 28:405�

420 1997

[23] Thompson, J. D, Higgins, D. G, Gibson, T. J 1994 CLUSTAL W: Improving

the sensitivity of progressive multiple sequence alignment through sequence

weighting, position specific gap penalties and weight matrix choice. Nucleic

Acids Res 22:4673�4680.

[24] Throne, J. L., Kishino, H. and Felsenstein, J. 1991 An evolutionary model

for maximum likelihood alignment of DNA sequences. J Mol Evol 33,114-

124.

[25] Throne, J. L., Kishino, H. and Felsenstein, J. 1992 Inching toward relity:

an improved likelihood model of squence evolution. J Mol Evol 34, 3-16.

68


