
Abstract

In this thesis, we propose a variant of the ANSI X9.62 ECDSA. We give

a brief introduction to the digital signature algorithm in chapter 2, and then

give the basic concepts of the elliptic curve cryptosystems in chapter 3. The

next chapter includes the elliptic curve version of DSA, and finally a variant

of ECDSA will be given in chapter 5.

Keywords: digital signature algorithm(DSA), elliptic curve digital signature

algorithm(ECDSA).

i

`̀̀ ���

ÍS¡Zx�êÝ3"DYi`aÌÝó�)K�ÏÞa&Æ+Ûó�)

KÝÛD�Ù v3Ïëa�+Yi`aÛD�ÙÝÃÍÃF�å#½+

ÛYi`aÌÝó�)K(ECDSA)|C&ÆXè�Ý×Í;�ÝÌÍ�

n"C� ó�)K� Yi`aó�)K�

ii

Contents

Abstract i

`̀̀��� ii

1 Introduction 1

2 Digital Signature Algorithm 3

2.1 Discrete Logarithm Problems 3

2.2 The Digital Signature Schemes 3

2.3 Hash Function . 4

2.4 The Digital Signature Algorithm (DSA) 5

3 Elliptic Curves Cryptosystems 8

3.1 Elliptic Curves over Finite Field Fp = Z/pZ 8

3.2 Elliptic Curve Cryptosystems 12

4 Elliptic Curve DSA (ECDSA) 14

4.1 Elliptic Curve DLP (ECDLP) 14

4.2 Elliptic Curve DSA (ECDSA) 15

4.3 DSA VS. ECDSA . 18

4.4 An Example of ECDSA . 19

iii

5 A variation of ECDSA 21

5.1 Algorithm . 21

5.2 EDCSA VS. variation ECDSA 23

5.3 Examples . 24

5.4 Security Analysis . 27

References 29

iv

Chapter 1

Introduction

The Digital Signature Algorithm was specified in a U.S. Government

Federal Information Processing Standard called the Digital Signature Stan-

dard. Its security is based on the computational intractability of the discrete

logarithm problem in prime-order subgroups of (Z/pZ)×.

Elliptic curve cryptosystems were invented by Neal Koblitz and Vic-

tor Miller in 1985. They can be viewed as elliptic curve analogues of the

older discrete logarithm cryptosystems in which the subgroup of (Z/pZ)× is

replaced by the group of points on an elliptic curve over a finite field. The

mathematical basis for the security of elliptic curve cryptosystems is the

computational intractability of the elliptic curve discrete logarithm prob-

lem.

Since the Elliptic Curve Digital Logarithm Problem appears to be

significantly harder than the Digital Logarithm Problem, the strength-per-

key-bit is substantially greater in elliptic curve systems than in conventional

discrete logarithm systems. Thus, smaller parameters can ce used in Elliptic

Curve Cryptosystem than with Digital Logarithm systems but with equiv-

alent levels of security. The advantages that can be gained from smaller

1

parameters include speed (faster computations) and smaller keys and cer-

tificates. These advantages are especially important in environments where

processing power, strong space, bandwidth, or power consumption is con-

strained.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the el-

liptic curve analogue of the Digital Signature Algorithm. ECDSA was first

proposed in 1992 by Scott Vanstone in response of NIST (Nation Institute of

Standards and Technology) request for public comments on their proposal

for Digital Signature Schemes. It was accepted in 1998 as an ISO (Interna-

tional Standards Organization) standard (ISO 14888-3), accepted in 1999 as

an ANSI (American National Standards Institute) standard (ANSI X9.62),

and accepted in 2000 as an IEEE (Institute of Electrical and Electronics

Engineers) standard (IEEE 1363-2000) and FIPS standards (FIPS 186-2).

It is also under consideration for inclusion in some other ISO standards. In

this thesis, we propose a variant of the ANSI X9.62 ECDSA.

We give a brief introduction of the digital signature algorithm in chap-

ter 2, and then give the basic concepts of the elliptic curve cryptosystems

in chapter 3. The next chapter comes the elliptic curve version of DSA and

finally a variant of ECDSA will be given in chapter 5.

2

Chapter 2

Digital Signature Algorithm

2.1 Discrete Logarithm Problems

Fix a prime p. Let α and β be two nonzero integers mod p and suppose

β ≡ αx (mod p).

The problem of finding x is called the discrete logarithm problem (DLP). It

is easy to compute αx mod p, but solving αx ≡ β for x is probably hard.

2.2 The Digital Signature Schemes

The conventional handwritten signature on a document is used to certify

that the signer is responsible for the content of the document. The signature

is physically a part of the document and while forgery is certainly possible,

it is difficult to do so convincingly. Trying to mimic a handwritten signature

in a digital medium leads to a difficulty since cut and paste operations can

be used to create a perfect forgery. Thus, we need to have a way of signing

messages digitally which is functionally equivalent to a physical signature,

but which is at least as resistant to forgery as its physical counterpart.

3

Schemes which provide this functionality are called Digital Signature

Schemes. A Digital Signature Scheme will have two components, a private

signing algorithm which permits a user to securely sign a message and a

public verification algorithm which permits anyone to verify that the signa-

ture is authentic. The signing algorithm needs to “bind” a signature to a

message in such a way that the signature can not be pulled out and used

to sign another document, or have the original message modified and the

signature remain valid. For practical reasons it would be necessary for both

algorithms to be relatively fast and if small computers such as smart cards

are to be used, the algorithms can not be too computationally complex.

2.3 Hash Function

A hash function H is a transformation that takes an input m and returns

a fixed-size string, which is called the hash value h (that is, h = H(m)). Hash

functions with just this property have a variety of general computational

uses, but when employed in cryptography, the hash functions are usually

chosen to have some additional properties.

The basic requirements for a cryptographic hash function are as follows.

• The input can be of any length.

• The output has a fixed length.

• H(m) is relatively easy to compute for any given m.

• H(m) is one-way.

• H(m) is collision-free.

4

A hash function H is said to be one-way if it is hard to invert, where

“hard to invert” means that given a hash value h, it is computationally

infeasible to find some input m1 such that H(m1) = h.

If, given a message m1, it is computationally infeasible to find a message

m2 not equal to m1 such that H(m1) = H(m2), then H is said to be a

weakly collision-free hash function.

A strongly collision-free hash function H is one for which it is computa-

tionally infeasible to find any two messages m1 and m2 such that H(m1) =

H(m2)

The hash value represents concisely the longer message or document

from which it was computed; this value is called the message digest. One can

think of a message digest as a “digital fingerprint” of the larger document.

Examples of well known hash functions are MD2 and MD5 and SHA .

2.4 The Digital Signature Algorithm (DSA)

The DSA was proposed in August 1991 by U.S. National Institute of

Standards and Technology (NIST) and was specified in a U.S. Government

Federal Information Processing Standard (FIPS 186) called the Digital Sig-

nature Standard (DSS). The DSA can be viewed as a variant of the ElGamal

signature scheme. Its security is based on the intractability of the discrete

logrithm problem in prime-order subgroup of (Z/pZ)×.

5

• DSA DOMAIN PARAMETER GENERATION

Domain parameter are generated for each entity in a particular security

domain.

1. Select a 160-bit prime q and a 1024-bit prime p with the property

that q|p− 1.

2. Select an element h ∈ (Z/pZ)× and compute g = h(p−1)/q (mod p).

(Repeat until g 6= 1.)

3. Domain parameters are p, q and g.

• DSA KEY PAIR GENERATION

Each entity A in the domain with domain parameters (p, q, g) does the

following:

1. Select a random or pseudo-random integer x such that 1 ≤ x ≤
q − 1.

2. Compute y = gx (mod p).

3. A’s public key is y; A’s private key is x.

• DSA SIGNATURE GENERATION

To sign a message m, A does the following:

1. Select a random or pseudo-random integer k such that 1 ≤ k ≤
q − 1.

2. Compute X = gk (mod p) and r = X (mod q). If r = 0 thaen go

to step 1.

3. Compute k−1 (mod q).

4. Compute H(m) = SHA-1(m).

6

5. Compute s = k−1(H(m) + xr) (mod q). If s = 0 then go to step 1.

6. A’s signature for the message m is (r, s).

• DSA SIGNATURE VERIFICATION

To verify A’s signature (r, s) on m, B obtains authentic copies of A’s

domain parameters (p, q, g) and public key y and does the following:

1. Verify that r and s are integers in the interval [1, q − 1].

2. Compute H(m) = SHA-1(m).

3. Compute w = s−1 (mod p).

4. Compute u1 = H(m)w (mod q) and u2 = rw (mod q).

5. Compute X = gu1yu2 (mod p) and v = X (mod q).

6. Accept the signature if and only if v = r.

• PROOF THAT SIGNATURE VERIFICATION WORKS

If a signature (r, s) on a message m was indeed generated by A, then

s = k−1(H(m) + xr) (mod q). Rearranging gives

gk = gs−1(H(m)+xr)

= gs−1H(m)+s−1rx

= gH(m)wyrw

= gu1yu2.

7

Chapter 3

Elliptic Curves Cryptosystems

3.1 Elliptic Curves over Finite Field Fp = Z/pZ

Let p > 3 be an odd prime. An elliptic curve E over Fp is defined by

an equation of the form

y2 = x3 + ax + b, (3.1)

where a, b ∈ Fp, and 4a3 + 27b2 6≡ 0 mod p. The set E(Fp) consists of all

points (x, y), x ∈ Fp, y ∈ Fp that satisfy the defining equation(3.1), together

with a special point O called the point at infinity.

8

Example: (Elliptic curve over F23) Let p = 23 and consider the

elliptic curve E : y2 = x3 + x + 4 defined over F23. Note that 4a3 + 27b2 =

4 + 432 = 436 ≡ 22 mod 23, so E is indeed an elliptic curve. The points in

E(F23) are O and the following:

(0, 2), (0, 21), (1, 11), (1, 12,) (4, 7),

(4, 16), (7, 3), (7, 20), (8, 8), (8, 15),

(9, 11), (9, 12), (10, 5), (10, 18), (11, 9),

(11, 14), (13, 11), (13, 12), (14, 5), (14, 18),

(15, 6), (15, 17), (17, 9), (17, 14), (18, 9),

(18, 14), (22, 5), (22, 19).

Addition formula: There is a rule, called the chord-and-tangent rule, for

adding two points on an elliptic curve E(Fp) to give a third elliptic curve

point. Together with this addition operation, the set of points E(Fp) forms

a group with O serving as its identity. It is this group that is used in the

construction of elliptic curve cryptosystems.

The addition rule is best explained geometrically. Let P = (x1, y1)

and Q = (x2, y2) be two distinct points on an elliptic curve E. Then the sum

of P and Q, denoted R = (x3, y3), is defined as follows. First draw the line

through P and Q; this line intersects the elliptic curve in a third point. Then

R is the reflection of this point in the x-axis. This is depicted in Figure 3.1.

The elliptic curve in the figure consists of two parts, the ellipse-like figure

and the infinite curve.

If P = (x1, y1), then the double of P , denoted R = (x3, y3), is defined

as follows. First draw the tangent line to the elliptic curve at P . This line

intersects the elliptic curve in a second point. Then R is the reflection of

this point in the x-axis. This is depicted in Figure 3.2.

9

-

6

2 4-2-4

5

10

-5

-10

P R

-R p

p
Q

x
-

6

2 4-2-4

5

10

-5

-10

P
-R

R

p

y y

x

Figure 3.1: P + Q = R Figure 3.2: P + P = R

The following algebraic formulae for the sum of two points and the

double of a point can be derived from the geometric description.

1. Let P = (x1, y1) ∈ E(Fp).Then P +O = O + P = P for all p ∈ E(Fp).

2. If P = (x1, y1) ∈ E(Fp), then (x1, y1) + (x1,−y1) = O. (The point

(x1,−y1) is denoted by −P , and is called the negative of P ; observe

that −P is indeed a point on the curve.)

3. (Addition Formula) Let P = (x1, y1), Q = (x2, y2) ∈ E(Fp).. Then P +

Q = (x3, y3) and the formula of x3 and y4 are

x3 = m2 − x1 − x2

y3 = m(x1 − x3)− y1.

where

m =





y2 − y1

x2 − x1
, if P 6= Q

3x2
1 + a

2y1
, if P = Q

10

Example: Let p = 23 and consider the elliptic curve E : y2 = x3 +x+4

defined over F23.

1. (Point addition) Let P = (4, 7), Q = (13, 11) ∈ E(F23).Then P + Q =

(x3, y3) is computed as follows:

x3 = (
11− 7

13− 4
)2 − 4− 13 = −8 ≡ 23 (mod 23).

y3 = (
11− 7

13− 4
)(4− 15)− 7 = −40 ≡ 6 (mod 23).

Hence P + Q = (15, 6).

2. (Point doubling) Let P = (4, 7). Then 2P = P + P = (x4, y4) is

computed as follows�

x4 = (
3(4)2 + 1

14
)2 − 8 = 217 ≡ 10 (mod 23).

y4 = (
3(4)2 + 1

14
)(4− 10)− 7 = −97 ≡ 18 (mod 23).

Hence 2P = (10, 18).

11

3.2 Elliptic Curve Cryptosystems

Several approaches to encryption (or decryption) using elliptic curves

have been analyzed. This paper describes one of them. The first task in this

system is to encode the plaintext message m to be sent as an x-y point Pm.

It is the point Pm that will be encrypted as a cipher text and subsequently

decrypted. Note that we cannot simply encode the message as the x or

y coordinate of a point, because not all such coordinates are in E(modp).

There are approaches to encoding. We developed a scheme that will be

reported elsewhere. As with the key exchange system, an encryption (or

decryption) system requires a point G and an elliptic group E(modp) as

parameters. Each user A selects a private key αA and generates a public key

PA = αAG.

To encrypt and send a message Pm to B, A chooses a random positive integer

x and produces the cipher text Cm consisting to the pair of points

Cm = {xG, Pm + xPB}.

Note that A has used B’s public key PB. To decrypt the cipher text, B

multiplies the first point in the pair by B’s secret key and subtracts the

result from the second point:

Pm + xPB − nB(xG) = Pm + x(nBG)− nB(xG) = Pm.

A has masked the message Pm by adding xPB to it.

Nobody but A knows the value of x, so even though PB is a public

key, nobody can remove the mask xPB. However, A also includes a “clue,”

which is enough to remove the mask if one knows the private key nB. For

12

an attacker to recover the message, the attacker would have to compute x

given G and xG, which is hard.

13

Chapter 4

Elliptic Curve DSA (ECDSA)

4.1 Elliptic Curve DLP (ECDLP)

The elliptic curve discrete logarithm problem is the cornerstone of much

of present-day elliptic curve cryptography. It relies on the natural group

law on a non-singular elliptic curve which allows one to add points on the

curve together. Given an elliptic curve E over a finite field F, a point on

that curve, P , and another point you know to be an integer multiple of that

point Q, the “problem” is to find the integer n such that nP = Q.

The problem is computationally difficult unless the curve has a “bad”

number of points over the given field, where the term “bad” encompasses

various collections of numbers of points which make the elliptic curve discrete

logarithm problem breakable. For example, if the number of points on E over

F is the same as the number of elements of F, then the curve is vulnerable

to attack. It is because of these issues that point-counting on elliptic curves

is such a hot topic in elliptic curve cryptography.

14

Example: In the elliptic curve group defined by y2 = x3+9x+17 over

F23, What is the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)?

Ans: One way to find k is to compute multiples of P until Q is found.

The first few multiples of P are:

P = (16, 5), 2P = (20, 20), 3P = (14, 14),

4P = (19, 20), 5P = (13, 10), 6P = (7, 3),

7P = (8, 7), 8P = (12, 17), 9P = (4, 5).

Since 9P = (4, 5) = Q, the discrete logarithm of Q to the base P is k = 9.

4.2 Elliptic Curve DSA (ECDSA)

This section describes the procedures for generating and verifying signa-

tures using the ECDSA.

• DOMAIN PARAMETER GENERATION

The domain parameter for ECDSA consist of a suitably chosen elliptic

cure E defined over a finite field Fp of characteristic p, and a base point

G ∈ Ep(a, b) with order n.

1. Select a random or pseudo-random integer x such that 1 ≤ x ≤
n− 1.

2. Compute Q = xG.

3. A’s public key is Q; A’s private key is x.

• ECDSA SIGNATURE GENERATION

To sign a message m, an entity A with domain parameters (p, Ep(a, b), G, n)

and associated key pair (x,Q) does the following:

15

1. Select an integer k such that 1 ≤ k ≤ n− 1.

2. Compute kQ = (x1, y1).

3. Compute r = x1 (mod n). If r = 0 then go to step 1.

4. Compute k−1 (mod n).

5. Compute SHA-1(m) and convert this string to an integer H(m).

6. Compute s = k−1(H(m) + xr) (mod n). If s = 0, then go to step

1.

7. A’s signature for the message m is (r, s).

• ECDSA SIGNATURE VERIFICATION

To verify A’s signature (r, s) on m, B obtains an authentic copy of A’s

domain parameter (p, Ep(a, b), G, n) and associated public key Q. B

then does the following:

1. Verify that r and s are integers in the interval [1, n− 1].

2. Compute SHA-1(m) and convert this string to an integer H(m).

3. Compute w = s−1 (mod n).

4. Compute u1 = H(m)w (mod n) and u2 = rw (mod n).

5. Compute X = (x2, y2) = u1G + u2Q.

6. If X = O, then reject the signature. Otherwise, compute v = x2

(mod n).

7. Accept the signature if and only if v = r.

• PROOF THAT SIGNATURE VERIFICATION WORKS

If a signature (r, s) on a message m was indeed generated by A, then

16

s = k−1(H(m) + xr) (mod n). Rearranging gives

kG = s−1(H(m) + xr)G (mod n)

= s−1H(m)G + s−1rxG (mod n)

= H(m)wG + rwQ (mod n)

= u1G + u2Q (mod n).

Thus u1G + u2Q = (u1 + u2d)G = kG, and so v = r as required.

• RATIONALE FOR CHECKS ON r AND s IN SIGNATURE VERIFI-

CATION.

Step q of signature verification checks that r and s are integers in the

interval [1, n− 1]. These checks can be performed very efficiently, and

are prudent measures in light of known attacks on related ElGamal

signature schemes which do not perform these checks. The following

is a plausible attack on ECDSA if the check r 6= 0 (and, more gen-

erally, r 6≡ 0 mod n) is not performed. Suppose that A is using the

elliptic curve y2 = x3 + ax + b over Fp, where b is a quadratic residue

modulo p, and suppose that A uses select a base point G = (0,
√

b) of

prime order n. (It is plausible that all entities may select a base point

with x-coordinate in order to minimize the size of domain parameters.)

An adversary can now forge A’s signature on any message m of its

choice by computing H(m) =SHA-1(m). It can easily be checked that

(r = 0, s = H(m)) is a valid signature for m.

Comparing DSA and ECDSA. Conceptually, the ECDSA is simply

obtain from the DSA by replacing the subgroup of order q of (Z/pZ)×

generated by g with the subgroup of points on an elliptic curve that

17

are generated by G. The only significant difference between ECDSA

and DSA is in the generation of r. The DSA does this by taking the

random element X = gk mod p and reducing it modulo q, thus obtain-

ing an integer in the interval [1, q − 1]. The ECDSA generates r in the

interval [1, n − 1] by taking the x-coordinate of the random point kG

and reducing it modulo n.

4.3 DSA VS. ECDSA

DSA ECDSA

Key

generation

Select p, q, x, q|p− 1,

and 1 ≤ x < q.

Select h ∈ [1, p− 1], compute

g = h(p−1)/q (mod p)

y = gx (mod p)

public key : (p, q, g, y)

private key : x

Select Ep(a, b), x,

and 1 ≤ x < n.

Select G ∈ Ep(a, b) with order n

and compute

Q = dG

public key : (Ep(a, b), p, G, n, Q)

private key : x

Signature

generation

Select k, 1 ≤ k < n.

r = (gk mod p) (mod q)

s = k−1(H(m) + xr) (mod q)

(r, s) is the signature of m.

Select k, 1 ≤ k < q.

kG = (x1, y1), r = x1 (mod n)

s = k−1(H(m) + xr) (mod n)

(r, s) is the signature of m.

Signature

verification

w = s−1 (mod q)

u1 = H(m)w (mod q)

u2 = rw (mod q)

v = (gu1yu2 mod p) (mod q)

v = r ⇒ accept the signature.

w = s−1 (mod n)

u1 = H(m)w (mod n)

u2 = rw (mod n)

u1G + u2Q = (x2, y2),

v = x2 (mod n)

v = r ⇒ accept the signature.

18

4.4 An Example of ECDSA

Example: Let p = 114973; the elliptic curve E : y2 = x3−3x+69424 and

a base point G = (11570, 42257) with order n = 114467; select x = 86109

then Q = xG = (6345, 28549); and the message m = “worldof” it’s hash

value H(m) = 1789679805, the signature for the message m is (r, s) as

following:

• ECDSA SIGNATURE as following:

1. Select k = 84430 such that 1 ≤ k ≤ n− 1.

2. Compute kG = (11705, 10585), r = 31167 (mod 114973).

3. Compute s = k−1(H(m) + xr) = 82722 (mod 114973).

• ECDSA VERIFICATION as following:

1. Compute w = s−1 = 83035 (mod 114973).

2. Compute

u1 = H(m)w = 71001 (mod 114973)

u2 = rw = 81909 (mod 114973)

3. Compute

u1G = (66931, 53304)

u2Q = (88970, 41780),

u1G + u2Q = (31167, 31627) and v = 31167 (mod 114973).

4.

v = 31167 (mod 114973)

r = 31167 (mod 114973).

19

We obtain v = r, that is accept the signature.

20

Chapter 5

A variation of ECDSA

5.1 Algorithm

A variant of ECDSA.

• ECDSA DOMAIN PARAMETER GENERATION

The domain parameter for ECDSA consist of a suitably chosen elliptic

cure E defined over a finite field Fp of characteristic p, and a base point

G ∈ Ep(a, b) with order n.

1. Select a random or pseudo-random integer x such that 1 ≤ x ≤
n− 1.

2. Compute Q = xG.

3. A’s public key is Q; A’s private key is x.

• ECDSA SIGNATURE GENERATION

To sign a message m, an entity A with domain parameters (p, Ep(a, b), G, n)

and associated key pair (x,Q) does the following:

1. Select two integers k1, k1 such that 1 ≤ k1, k1 ≤ n− 1.

2. Compute k1G = (x1, y1) and k2G = (x2, y2).

21

3. Compute r1 = x1 (mod n) and r1 = x2 (mod n). If r1 = 0 and

r1 = 0 then go to step 1.

4. Compute k−1
1 (mod n).

5. Compute SHA-1(m) and convert this string to an integer H(m).

6. Compute s = k−1
1 (H(m)k1 +x(r1 + r1)) (mod n). If s = 0, then go

to step 1.

7. A’s signature for the message m is (r1, s).

• ECDSA SIGNATURE VERIFICATION

To verify A’s signature (r1, s) on m, B obtains an authentic copy of

A’s domain parameter (p, Ep(a, b), G, n) and associated public key Q.

B then does the following:

1. Verify that r1 and r2 are integers in the interval [1, n− 1].

2. Compute SHA-1(m) and convert this string to an integer H(m).

3. Compute w = s−1 (mod n).

4. Compute u1 = H(m)wk2 (mod n) and u2 = (r1 + r2)w (mod n).

5. Compute X = (x3, y3) = u1G + u2Q.

6. If X = O, then reject the signature. Otherwise, compute v = x3

(mod n).

7. Accept the signature if and only if v = r1.

• PROOF THAT SIGNATURE VERIFICATION WORKS

If a signature (r1, s) on a message m was indeed generated by A, then

22

s = k−1
1 (H(m)k2 + x(r1 + r2)) (mod n). Rearranging gives

k1G = s−1(H(m)k2 + x(r1 + r2))G (mod n)

= s−1H(m)k2G + s−1(r1 + r2)xG (mod n)

= H(m)wk2G + (r1 + r2)wQ (mod n)

= u1G + u2Q (mod n).

Thus u1G + u2Q = (u1 + u2d)G = k1G, and so v = r1 as required.

5.2 EDCSA VS. variation ECDSA

ECDSA variant ECDSA

Key

generation

Select Ep(a, b), x,

and 1 ≤ x < n.

Select G ∈ Ep(a, b) with order n

and compute

Q = dG

public key : (Ep(a, b), p, G, n,Q)

private key : x

Select Ep(a, b), x,

and 1 ≤ x < n.

Select G ∈ Ep(a, b) with order n

and compute

Q = dG

public key : (Ep(a, b), p, G, n,Q)

private key : x

Signature

generation

Select k, 1 ≤ k < n.

kG = (x1, y1), r = x1(modn)

s = k−1(H(m) + xr)(modn)

(r, s) is the signature of m.

Select k1, k2, 1 ≤ k1, k2 < n.

k1G = (x1, y1), r1 = x1(modn)

k2G = (x2, y2), r2 = x2(modn)

s = k−1
1 (H(m)k2 + x(r1 + r2))(modn)

(r1, s) is the signature of m.

Signature

verification

w = s−1(modn)

u1 = H(m)w(modn)

u2 = rw(modn)

u1G + u2Q = (x2, y2),

v = x2(modn)

v = r ⇒ accept the signature.

w = s−1(modn)

u1 = H(m)wk2(modn)

u2 = (r1 + r2)w(modn)

u1G + u2Q = (x3, y3),

v = x3(modn)

v = r1 ⇒ accept the signature.

23

5.3 Examples

Example 1: Let p = 114973; the elliptic curve E : y2 = x3− 3x+69424

and a base point G = (11570, 42257) with order n = 114467; select x =

86109 then Q = xG = (6345, 28549); and the message m = “worldof” the

hash value is H(m) = 1789679805, the signature for the message m is (r1, s)

as following:

• ECDSA SIGNATURE as following:

1. Select k1 = 32685, k2 = 43508 such that 1 ≤ k1, k2 ≤ n− 1.

2. Compute

k1G = (11705, 10585), r1 = 11705 (mod 114973)

k2G = (4060, 59439), r2 = 4060 (mod 114973).

3. Compute s = k−1
1 (H(m)k2 + x(r1 + r2)) = 31509 (mod 114973).

• ECDSA SIGNATURE as following:

1. Compute w = s−1 = 71694 (mod 114973).

2. Compute

u1 = H(m)k2w = 57445 (mod 114973)

u2 = (r1 + r2)w = 8752 (mod 114973).

3. Compute

u1G = (83855, 23496)

u2Q = (37512, 96852),

u1G + u2Q = (11705, 10585) and v = 11705 (mod 114973).

24

4.

v = 11705 (mod 114973)

r1 = 11705 (mod 114973).

We obtain v = r1, that is accept the signature.

25

Example 2: Let p = 150197; the elliptic curve E : y2 = x3 − 3x +

45624 and a base point G = (48640, 94626) with order n = 150033; se-

lect x = 52414 then Q = xG = (15837, 75466); and the message m =

“ecdsanew from monkey” the hash value is H(m) = 596493798, the signa-

ture for the message m is (r1, s) as following:

• ECDSA SIGNATURE as following:

1. Select k1 = 18506, k2 = 56012 such that 1 ≤ k1, k1 ≤ n− 1.

2. Compute

k1G = (78866, 50297), r1 = 78866 (mod 150197)

k2G = (53820, 3610), r2 = 53820 (mod 150197).

3. Compute s = k−1
1 (H(m)k2 + x(r1 + r2)) = 105358 (mod 150197).

• ECDSA VERIFICATION as following:

1. Compute w = s−1 = 13843 (mod 150197).

2. Compute

u1 = H(m)k2w = 50883 (mod 150197)

u2 = (r1 + r2)w = 68312 (mod 150197).

3. Compute

u1G = (77938, 110891)

u2Q = (18615, 114143),

u1G + u2Q = (78866, 50297) and v = 78866 (mod 150197).

26

4.

v = 78866 (mod 150197)

r1 = 78866 (mod 150197).

We obtain v = r1, that is accept the signature.

5.4 Security Analysis

The reason why our scheme is better than original one is following:

1. In the original ECDSA. The secrets k use to sign two or more messages

should generated independently of each other. In particular, a different

secret k should signed; otherwise, the private key x can be recovered.

Note that if a secure random or pseudo-random number generator is

used, then the chance of generating a repeated k value is negligible. To

see how private keys can be recovered if secrets are repeated, suppose

that the same secret k was used to generate ECDSA signatures (r, s1)

and (r, s2) on two different messages m1 and m2. Then

s1 = k−1(H(m1) + xr) (mod n)

s2 = k−1(H(m2) + xr) (mod n),

where H(m1) = SHA-1(m1) and H(m2) = SHA-1(m2). Then

ks1 = H(m1) + xr (mod n)

ks2 = H(m2) + xr (mod n).

Subtraction gives k(s1 − s2) = H(m1) − H(m2) (mod n). If s1 66= s2

(mod n), which occurs with overwhelming probability, then k = (s1 −
27

s2)
−1(H(m1)−H(m2)) (mod n). Thus, an adversary can determine k,

and then use this to recover x.

2. On our scheme, if we use the same secret k1, k2 was used to generate

ECDSA signatures (r1, s1) and (r1, s2) on two different messages m1

and m2. Then

s1 = k−1
1 (H(m1)k2 + x(r1 + r2)) (mod n)

s2 = k−1
1 (H(m2)k2 + x(r1 + r2)) (mod n),

where H(m1) = SHA-1(m1) and H(m2) = SHA-1(m2). Then

k1s1 = H(m1)k2 + x(r1 + r2) (mod n)

k1s2 = H(m2)k2 + x(r1 + r2) (mod n).

Subtraction gives k1(s1−s2) = (H(m1)−H(m2))k2 (mod n). Even if s1 6= s2

(mod n), we obtain the relation equation of k1(s1−s2) = (H(m1)−H(m2))k2.

We can not determine k by this equation and then use this to recover x.

Hence, our scheme is more security.

28

References

[1] D. Johnson and A. Menezes, “The Elliptic Curve Digital Signature Al-

gorithm(ECDSA),” Techical Report CORR 99-34,Centre for Applied

Cryptograpic Research (CACR), University of Waterloo, August 1999.

[2] S. Goldwasser, S. Micali and R. Rivest, “A digital signature scheme

against adaptive choosen message attracks,” SIAM Journal on Com-

puting, 17 (1997), 281-308.

[3] S. Blake-Wilson and A. Menezes, “Entity authentication and authenti-

cated key transport ptotocols employing asymmetric techiques ,” Pro-

ceedings of the 5th International Workshop on Security Protocols, Lec-

ture Notes in Computing Science 1361(1984), 137-158.

[4] National Institute of Standards and Technology, Digital Signature Stan-

dard, FIPS Publication 186, 1994.

[5] National Institute of Standards and Technology, Entity Authentication

using Public Key Cryptofraphy, FIPS Publication 196, 1997.

[6] M. Rabin, “Digitalized signatures and public-key functions as in-

tractable as factorization,” MIT/LCS/TR-212, MIT Laboratory for

Computer Science, 1979.

29

[7] R. Rivest, A. Shamir and L. Adleman, “A method for obtaining digi-

tal signatures and public-key cryptosystems,” Communications of the

ACM 21(1978), 120-126.

[8] C. Schnorr, “Efficient signature generation by smart cards” Journal of

Cryptology, 43 (1991), 161-174.

[9] NIST, DRAFT Special Publication 800-57, “Recommendation on

Key Management”, http://csrc.nist.gov/CryptoToolkit/kms/guideline-

1-Jan03.pdf, 2003.

[10] NIST, FIPS 186-2, “Digital Signature Standard,” http://csrc.nist.gov/

publiscations/fips/fips186-2/fips186-2-change1.pdf, 2001.

[11] NIST, FIPS PUB 180-2, “Secure Hash Standard,” http://csrc.nist.gov/

publiscations/fips/fips180-2/fips180-2withchangenotice.pdf, 2002.

[12] NIST, “NIST Brief Comments on Recent Cryptanalytic Attracks on

SHA-1,” http://csrc.nist.gov/hash standards comments.pdf, 2005.

[13] D. Galindo, S. Martin and J.L. Villar, “Evaluating elliptic curve based

KEMs in the light of pairings,” http://eprint.iacr.org/2004/084.pdf,

2004.

[14] ù'£, “ElGamaló�)KÝ.Â�;�,” ���.ó.@~XÆÿ

¡Z, 2000.

30

Appendix

In[1]:= <<NumberTheory‘NumberTheoryFunctions‘

In[2]:= ecadd[p1 ,p2 ,a ,b ,n]:=Module[z,m,x3,y3,p3,

z=0;z1=1;If[p1==”infinity”,”infinity”,p3=p2;z=1,” ”];

If[z==1,” ”,If[p2==”infinity”,”infinity”,p3=p1;z=1,” ”]];

If[z==1,” ”, If[p1[[1]]==p2[[1]]&&p1[[2]]==p2[[2]]==0,

p3=”infinity”,”infinity”;z=1,” ”]];

If[z==1,” ”,If[p1[[1]]==p2[[1]]&&p1[[2]] 6=2[[2]],

p3=”infinity”,”infinity”;z=1,” ”]];

If[z==1,” ”, If[p1==p2&&GCD[p1[[2]],n] 6=1&&

GCD[p1[[2]],n] 6=n,z=1;

z1=GCD[p1[[2]],n],” ”]];

If[z==1,” ”,If[p1==p2,

m=Mod[(3*p1[[1]]2+a)*PowerMod[2*p1[[2]],-1,n],n];

z=1;x3=m2-p1[[1]]-p2[[1]];

y3=m*(p1[[1]]-x3)-p1[[2]];p3=Mod[x3,y3,n], ” ”]];

If[z==1,” ”,If[GCD[p2[[1]]-p1[[1]],n] 6=1,z=1;

z1=GCD[p2[[1]]-p1[[1]],n],” ”]];

If[z==1,” ”,m=Mod[(p2[[2]]-p1[[2]])*

PowerMod[p2[[1]]-p1[[1]],-1,n],n];

x3=m2-p1[[1]]-p2[[1]];y3=m*(p1[[1]]-x3)-p1[[2]];

p3=Mod[x3,y3,n]];If[z1==1,p3,”factor=”,z1]];

ecmus[p1 ,m ,a ,b ,n]:=Module[z,z=p1;

For[i=1,i¡m&&z[[Length[z]]][[1]] 6=”factor=”,i++,

z=Append[z,ecadd[p1,z[[Length[z]]],a,b,n]]];z]

ecmlt[p1 ,m ,a ,b ,n]:=Last[ecmus[p1,m,a,b,n]]

31

In[3]:= p=114973;

In[4]:= x=11570;

In[5]:= y=42257;

In[6]:= G={x, y};
In[7]:= b=69424;

In[8]:= n=114467;

In[9]:= d=Random[Integer, 1, n - 1]

In[10]:= 86109

In[11]:= Q=Last[multell[G, d, -3, b, p]]

In[12]:= 6345, 28549

In[13]:= H=Hash[worldof]

In[14]:= 1789679805

In[15]:= k=Random[Integer, 1, n - 1]

In[16]:= 32685

In[17]:= q=Random[Integer, 1, n - 1]

In[18]:= 43508

In[19]:= P=Last[multell[G, k, -3, b, p]]

In[20]:= {11705, 10585}
In[21]:= r=Mod[P[[1]], n]

In[22]:= 11705

In[23]:= L=Last[multell[G, q, -3, b, p]]

In[24]:= {4060, 59439}
In[25]:= t=Mod[L[[1]], n]

In[26]:= 4060

In[27]:= s=Mod[PowerMod[k, -1, n]*(H*q + d*(r + t)), n]

In[28]:= 31509

32

In[29]:= w=PowerMod[s, -1, n]

In[30]:= 71694

In[31]:= u1=Mod[H*q*w, n]

In[32]:= 57445

In[33]:= u2=Mod[(r + t)*w, n]

In[34]:= 8752

In[35]:= R=Last[multell[G, u1, -3, b, p]]

In[36]:= {83855, 23496}
In[37]:= J=Last[multell[Q, u2, -3, b, p]]

In[38]:= {37512, 96852}
In[39]:= F=addell[R, J, -3, b, p]

In[40]:= {11705, 10585}
In[41]:= v=Mod[F[[1]], n]

In[42]:= {11705, 10585}
In[43]:= v==r

In[44]:= True

33

34

