
Abstract

In 1998, Rose, Suhov and Vvdenskaya discussed a fully-connected packet-switched net-

work with N nodes. Messages generated from a source i and deliver to a destination

j are assumed as Poisson process 	i;j with rate v: Each message is divided into smaller

units called packets. The lengths of messages are i:i:d and bounded. The end-to-end

delay time is the time that all packets be transmitted completely from its source to its

destination. Each packet can choose a direct route (i ! j) with probability p or an

alternate route (i! k ! j) with probability q: They found the optimal policies about p

and q with di�erent means of message lengths and v such that the end-to-end delay

time is minimized.

Here we use the same routing principle of this packet-switched network to simulate

a transportation network. Consider a fully-connected traÆc network with 2N+1 nodes,

labelled with 1; 2; 3; :::; N; :::; 2N � 2; �; �; 
: Suppose customers generated from a

source node i and traversed to a destination node j is a Poisson process 	i;j with rate

v for all di�erent i; j pairs. Each customer can choose to drive a car or to take a bus

independently with probabilities p and q (=1� p) respectively. Customers who driving a

car may drive on a direct route ( i ! j ) or on a speci�c alternate route ( i ! k ! j )

with probability m1; and m2

2N�1
respectively, where m2 = 1 � m1: Suppose for every K1

minutes, there is a bus on a speci�c alternate route �
 ns 
 �; or �
 nt 
 
; where

1 � ns � N � 1; and N � nt � 2N � 2: The goal of this paper is to �nd optimal policies

for probabilities m1; m2; p; and q such that the end-to-end delay time is minimized in this

M/G/1 queuing network. We can also address the relationships between these probabilities.

In reality, the capacity of a bus is �nite. It is obvious that when the buses have �nite

capacities, the optimal probability of q ( the probability that customers choose to take a

bus) will decrease as the capacity of the bus decreases.



1 Introduction

There are ways to transmit data from a source to a destination in a network. Rose,

Suhov and Vvedenskaya et al:(1998) [8] discussed a packet-switched network that uses the

store-and-forward technique, whereby data is transmitted from its source to its destination

without a complete circuit �rst being established between the source and the destination.

In this packet-switched network, all messages are divided into smaller units called packets

and transmitted in the network independently until they reach the destination node, where

the original message is then reassembled. Each packet transmits independently in the

network. Suppose that packets generated from a source often using di�erent routes until

they all reach the destination node. At the time when a message is generated, a route

decision is made about which part of it will be routed on a direct path (i ! j), and

which part of it will be routed on an alternate path (i ! k ! j). De�ne the end-to-end

delay time to be the time which elapses as a message generated from a source until all its

packets transmitted completely to the destination. Therefore, when all packets of the same

message are transmitted at the same time, the end-to-end delay time (from its source to

its destination) often tends to reduce.

Consider a fully-connected network with N nodes, messages with di�erent source i and

destination j are generated as an independent Poisson process 	i;j with rate v. Message

lengths are independent identically distributed (i; i; d) and bounded. Each packet of a

message can be transmitted on a direct route (i ! j) or an alternate route (i ! k ! j)

from its source to its destination with probabilities p and q

N�2
respectively; where q = 1�p.

All packets transmitted from the corresponding queues are operating on an FCFS basis. For

this practical network model, a useful results could be obtained about the optimal policy

which minimizes the end-to-end delay time. The results are listed in Table 1.1, where Popt

represents the optimal probability that a packet chooses a direct path, N is the number of

nodes and v is the rate that messages are generated from a source node in the network.

N < N 0 v < v0

Popt(N; v) � Popt(N
0

; v) Popt(N; v
0

) � Popt(N; v)

Table 1.1
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Based on the store-and-forward transmission technique of packet-switched network, we

use this transmission method to simulate a transportation network. Every car or bus is

driven on a path in the network as a packet. When customers generated from a source, they

choose to drive a car or take a public transportation according to some probabilities. We

need to choose a better probabilities such that the transportation network is more eÆcient,

and customers spent less time traverse from its source to its destination. On the other

hand, in heavy traÆc conditions, if most of customers choose to take public transportation

then it may reduce the end-to-end delay time.

Consider a fully-connected transportation network with 2N + 1 nodes labelled with

1; 2; 3; :::; N; :::; 2N � 2; �; �; and 
 (see Figure 1.1); customers with di�erent source

and destination pairs i; j are generated as a Poisson process 	i;j with rate v; and these

processes are i:i:d. At the time when customers are generated, the number of customers L is

bounded (also i:i:d:) and have probability distribution b(l), l = 1; 2; :::; m: Customers act as

messages from a source and the number of customers who choose to drive is as the number

of packets of a message. Every customer may choose to drive or take a bus independently

with probabilities p and q ( = 1�p) respectively. Customers may choose to drive on a direct

route (i! j) or a speci�c alternate route (i! k ! j) from the source i to the destination

j with probabilities m1 and m2

2N�1
respectively, where m2 = 1 � m1: Once customers are

generated from a source, the routing policy is also made on how many customers should

drive (on a direct path or a speci�c alternate path) and how many customers should take a

bus. Suppose for every K1 minutes, there will be a bus start from �; �; and 
 on a speci�c

alternate route �
 ns 
 � or �
 nt 
 
; where 1 � ns � N � 1; and N � nt � 2N � 2:

Let Wi(d) be the probability that the waiting time for a bus is d at node i: It is reasonable

to assume that the probability of the waiting time for a bus is 0 at node � is 1 when the

number of nodes in the network is in�nite. Also the transmission time between any two

nodes is assumed as a constant time T:

2



Figure 1.1: Fully-Connected Transportation Network with 2N+1 nodes

De�ne the end-to-end delay time D0 to be the time as customers generated from a

source until they all reached the destination ( no matter they drive or take a bus ). For

example if three customers A, B, and C move from a node i to a node j: A, B spent two and

three hours respectively to drive, C spent four hours to take a bus. Then the end-to-end

delay is four hours. Suppose l customers generated from a source and the sth (1 � s � l)

customer takes Ts time to move from the source to the destination, the end-to-end delay

time D0 =max
s

Ts: The distribution function corresponding to the end-to-end delay time is

denoted by

F (x;N) = P (D0 � x): (1:1)

According to the de�nition, we can derive the limiting distribution function

F (x) = limN!1 F (x;N): (1:2)

Since the driver can choose a direct route (called 1-path), or an alternate route (called

2-path) from a source to a destination, the driver may be waiting on the 1-path, or waiting

on the �rst link of the 2-path (called 2-1 path), or waiting on the second link of the 2-path

(called 2-2 path). We denote these waiting times by W ,W
0

; andW
00

respectively. Then W ,

W
0

; and W
00

are independent random variables in a stationary M/G/1 queue (see Figure

1.2) [9, 10]. All cars joining the queues are on an FCFS basis.
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Figure 1.2: Waiting time distributions on a 1-path and 2-path

Let F�;�(x) denotes the limiting distribution function that customers traverse from

node � to node � and let Fu;�(x) denotes the limiting distribution function that customers

traverse from node u to node �: At node �; customers will have waiting time W and

transmission time iT if i customers choose to drive on the 1-path from the source node �

to the destination node �: Since a customer chooses a 2-path from a source to a destination

with probability m2; two customers route on the same 2-path have probability (m2)2

2N�1
: As

N ! 1 , the probability that two customers joining the same 2-path will approach 0. So

the transmission time is 2T on every 2-path. If customers choose to take a bus from a

source node � to a destination node �; they will have waiting times W
0

; and W
00

on the

2-1 and 2-2 path and the waiting time W� for waiting a bus at node �: We can derive the

limiting distribution function F�;�(x) �rst as

F�;�(x)=
mP
i=1

b(i)pi[mi
1P(W+iT�x)+

iP
j=1

�
i

j

�
mi�j

1 mj
2P(W+(i-j)T�x)P(W

0

+W
00

+2T�x)j ]

+
m�1P
k=1

mP
i=k+1

b(i)
�
i

k

�
pi�kqk[mi�k

1 P(W+(i-k)T�x)+
i�kP
j=1

�
i�k
j

�
mi�k�j

1 mj
2P(W+(i-k-j)T�x)

P(W
0

+W
00

+2T�x)j ]P(W
0

+W
00

+W�+2T�x)

+
mP
i=1

b(i)P (W
0

+W
00

+W �+2T � x): (1:3)

At node u (1 � u � N � 1); customers will have waiting time W and transmission time

iT if i customers choose to drive on a 1-path from the source node u to the destination
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node � or customers will have waiting time W
0

; and W
00

corresponding to the �rst link of

a 2-path and the second link of a 2-path and transmission time 2T if customers choose to

drive on a 2-path from the source node u to the destination node �: On the other hand,

if customers choose to take a bus from a source node u to a destination node �; they will

have waiting time W
00

on the 2-2 path of a bus and the waiting time Wu for waiting a bus

at node u: From these we can also �nd the limiting distribution function Fu;�(x) as

Fu;�(x)=
mP
i=1

b( i)pi[mi
1P(W+iT�x)+

iP
j=1

�
i

j

�
mi�j

1 mj
2P(W+(i-j)T�x)P(W

0

+W
00

+2T�x)j ]

+
m�1P
k=1

mP
i=k+1

b( i)
�
i

k

�
pi�kqk[mi�k

1 P(W+(i-k)T�x)+

i�kP
j=1

�
i�k
j

�
mi�k�j

1 mj
2P(W+(i-k-j)T�x)P(W

0

+W
00

+2T�x)j ]P(W
00

+W u+T�x)

+
mP
i=1

b( i)qiP(W
00

+W u+T�x). (1:4)

According to equations (1.3) and (1.4) we can then �nd the probabilities p; q; m1; and

m2 to minimize the end-to-end delay time D0:

In equations (1.3) and (1.4), we have assumed that the network has in�nite node and

all buses have in�nite capacity. In section 4 and section 5, we will discuss the cases that

the network contains only �nite node ( with unlimited bus capacity ) or the bus has �nite

capacity ( with unlimited node in the network ) respectively. It is obvious that the optimal

probabilities of q ( the probability that a customer chooses to take a bus ) and m2 decrease

as network nodes and capacity of a bus decrease.
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2 Theoretical Analyses

To complete equations (1.3) and (1.4), we will de�ne some traÆc parameters. In this

transportation network, each bus has its route and every car can choose 1-path or 2-path

independently. To analyze car 
ows on each link, we will discuss case (I) that the network

has �nite node, and case (II) that the network has unlimited node.

(I) There are �nite node in the network

There may have more than one car depart from a source and choose the same path,

either 1-path or 2-path. Suppose that k customers generated from a source node i choose

the same link
�!
ih . Let �k;N(1) be the 1-path car 
ows with k customers joining this link

�!
ih ; and let �k;N(2) be the 2-path car 
ows with k customers joining this link

�!
ih : Then the

total arrival rate from node i to node h which has no bus passing is

�SumN = �SumN (1) +�SumN (2) , with (2:1)

�SumN (1) =
Pm

k=1 �k;N(1)

=
Pm

k=1

Pm

i=k b(i)
�
i

k

�
(pm1)

k(1� pm1)
i�kv; and

�SumN (2) =
Pm

k=1 �k;N(2)

=
Pm

k=1

Pm

i=k 2b(i)
�
i

k

�
pkm2(m2;N)

k�1(1� pm2;N )
i�kv;

where m2;N = m2

2N�1
, �SumN (1) is the total arrival rate of 1-path car 
ows and �SumN (2)

is the total arrival rate of 2-path car 
ows.

The total arrival rate on
�!
ih which has a bus passing is

�B;SumN = �SumN + 1
K1
; where 1

K1
is the arrival rate of a bus. (2:2)

To analyze 2-path car 
ows �SumN (2); let �k;N(21) be the 2-1 path car 
ows with k

customers on the link
�!
ih : The model considered is a fully-connected graph with 2N + 1

nodes, so the total number of 2-paths with
�!
ih as its �rst link is 2N � 1: It is possible that

more than one car been driven on this 2-1 path, we are able to list all of the possible arrival

rates that customers join this 2-1 path.

When k = 1, the arrival rate of car 
ows on a 2-1 path from node i to node h is
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�1;N(21) = (2N � 1)
Pm

i=1 b(i)
�
i

1

�
pm2;N (1� pm2;N)

i�1v: (2.3)

When k = 2, the arrival rate of car 
ows on a 2-1 path from node i to node h is

�2;N(21) = (2N �1)
Pm

i=1 b(i)
�
i

2

�
p2(m2;N)

2(1�pm2;N )
i�2v: (2.4)

In general, for any k = 1; 2; :::; m, the arrival rate of car 
ows on a 2-1 path from node i

to node h is

�k;N(21) = (2N � 1)
Pm

i=1 b(i)
�
i

k

�
pk(m2;N)

k(1� pm2;N )
i�kv:

= (2N � 1)
Pm

i=k b(i)
�
i

k

�
pk(m2;N)

k(1� pm2;N )
i�kv:

=
Pm

i=k b(i)
�
i

k

�
pkm2(m2;N)

k�1(1� pm2;N )
i�kv: (2:5)

So the total arrival rate of 2-1 path car 
ows at the node h is

�SumN (21) =
Pm

k=1

Pm

i=k b(i)
�
i

k

�
pkm2(m2;N)

k�1(1� pm2;N)
i�kv: (2.6)

Similarly, the total arrival rate of 2-2 path car 
ows at the node h is

�SumN (22) =
Pm

k=1

Pm

i=k b(i)
�
i

k

�
pkm2(m2;N)

k�1(1� pm2;N)
i�kv: (2.7)

From equations (2.6) and (2.7), the total arrival rate of 2-path car 
ows as in equations

(2.1) and (2.2) at the node h is then

�SumN (2) = �SumN (21) + �SumN (22)

=
Pm

k=1

Pm

i=k 2b(i)
�
i

k

�
pkm2(m2;N )

k�1(1 � pm2;N)
i�kv: (2.8)

(II) There are unlimited node in the network

Let �Sum1 ; �Sum1 (1); �Sum1 (2) be the total arrival rate, total 1-path car 
ows and total

2-path car 
ows respectively on link
�!
ih which has no bus passing. Then �Sum1 = �Sum1 (1)+

�Sum1 (2):

From equation (2.1), the total arrival rate �Sum1 from node i to node h which has no bus

passing is

�Sum1 =limN!1 �SumN

= limN!1[�
Sum
N (1) + �SumN (2)]

= limN!1

Pm

k=1 �k;N(1) + limN!1

Pm

k=1 �k;N(2)
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= limN!1

Pm

k=1

Pm

i=k b(i)
�
i

k

�
(pm1)

k(1� pm1)
i�kv+

limN!1

Pm

k=1

Pm

i=k 2b(i)
�
i

k

�
pkm2(m2;N)

k�1(1� pm2;N )
i�kv:

=
Pm

k=1

Pm

i=k b(i)
�
i

k

�
(pm1)

k(1� pm1)
i�kv +

Pm

i=1 2b(i)
�
i

1

�
pm 2 v: (2:9)

Let �k;1(1); and �k;1(2) be the 1-path and 2-path car 
ows with k customers: Then

�k;1(1) = limN!1 �k;N(1); and �k;1(2) = limN!1 �k;N(2): From equations (2.1) and (2.8),

we obtain that

�k;1(1) = limN!1 �k; N (1)

=
Pm

i=k b(i)
�
i

k

�
pkmk

1(1� pm1)
i�kv if k = 1; 2; 3; ::: m, and (2.10)

�k;1(2) = limN!1 �k; N(2)

=

�
2
Pm

i=1 b(i)
�
i

1

�
pm2 v if k = 1;

0 if k = 2; 3; :::; m:
(2:11)

The total arrival rate �B;Sum1 from node i to node h which has a bus passing is

�Sum1 + 1
K1
: (2.12)

From equation (2:11); the total arrival rate �Sum1 (2) of 2-path (2-1 path and 2-2 path)

from node i to node h is

Pm

i=1 2 b(i)
�
i

1

�
pm2v = 2pm2v

Pm

i=1 b(i)
�
i

1

�
= 2pm2v

Pm

i=1 b(i)i

= 2pm2vE(L): (2:13)

From equations (2.10), (2.11) and (2.13), the total arrival rate �Sum1 on a link that has

no bus passing is

�Sum1 =
Pm

k=1[�k;1(1) + �k;1(2)]

=
Pm

k=1

Pm

i=k b(i)
�
i

k

�
pkmk

1(1� pm1)
i�kv + 2pm2vE(L)

=
Pm

i=1 b(i)
�
i

1

�
pm1(1� pm1)

i�1v +
Pm

i=2 b(i)
�
i

2

�
(pm1)

2(1� pm1)
i�2v + � � �
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+
Pm

i=m�1 b(i)
�

i

m�1

�
(pm1)

m�1(1�pm1)
i�m+1v+

Pm

i=m b(i)
�
i

m

�
(pm1)

m(1�pm1)
i�mv

+2pm2vE(L)

= [ b(1)(pm1)
1 +b(2)

�
2
1

�
(pm1)

1(1� pm1) + b(3)
�
3
1

�
(pm1)

1(1� pm1)
2+

� � �+ b(m)
�
m

1

�
(pm1)

1(1� pm1)
m�1]v

+[b(2)(pm1)
2 + b(3)

�
3
2

�
(pm1)

2(1� pm1) + b(4)
�
4
2

�
(pm1)

2(1� pm1)
2+

� � �+ b(m)
�
m

2

�
(pm1)

2(1� pm1)
m�2]v

+[b(3)(pm1)
3 + b(4)

�
4
3

�
(pm1)

3(1� pm1) + b(5)
�
5
3

�
(pm1)

3(1� pm1)
2+

� � �+ b(m)
�
m

3

�
(pm1)

3(1� pm1)
m�3]v

�

�

�

+b(m)(pm1)
mv

+2pm2vE(L)

= b(1)pm1v

+b(2)(
�
2
1

�
pm1(1� pm1) + (pm1)

2)v

+b(3)(
�
3
1

�
pm1(1� pm1)

2 +
�
3
2

�
(pm1)

2(1� pm1) + (pm1)
3)v

+b(4)(
�
4
1

�
pm1(1�pm1)

3+
�
4
2

�
(pm1)

2(1�pm1)
2+
�
4
3

�
(pm1)

3(1�pm1)+(pm1)
4)v

�

�

�

+b(m)(
�
m

1

�
pm1(1� pm1)

m�1 +
�
m

2

�
(pm1)

2(1� pm1)
m�2+

�
m

3

�
(pm1)

3(1� pm1)
m�3+

� � �+ (pm1)
m)v + 2pm2vE(L)

= b(1)v � b(1)(1� pm1)v + b(2)[1� (1� pm1)
2]v + b(3)[1� (1� pm1)

3]v + b(4)[1�
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(1� pm1)
4]v + � � �+ b(m)[1� (1� pm1)

m]v + 2pm2vE(L)

= [b(1)+b(2)+b(3)+b(4)+� � �+b(m)]v�[b(1)(1�pm1)+b(2)(1�pm1)
2+b(3)(1�pm1)

3+

� � �+ b(m)(1� pm1)
m]v + 2pm2vE(L)

= (1�E[(1�pm1)
L])v+2pm2vE(L): (2.14)

Similarly, the total arrival rate �B;Sum1 on a link that has a bus passing is

�B;Sum1 = �Sum1 + 1
K1

= (1�E[(1�pm1)
L])v+2pm2vE(L)+

1
K1
: (2.15)

In this queuing system, the transmission time between any two adjacent nodes i and j (

says link
�!
ij ) is always T: This means each car has service time T on any link

�!
ij . Therefore,

the service rate on any link
�!
ij is 1=T: If the service rate is less than the arrival rate on a

link, then a car may wait on this link forever, and the limiting distribution functions (1.3)

and (1.4) would not converge. Therefore, for this queuing model to work well, the service

rate must be larger than the arrival rate on each link, thus we have the following theorem.

Theorem 2.1 Let �1 = T (2 � m1)pvE(L) and �2 = T [(2 � m1)pvE(L) + 1=K1]; then

�1 < 1 and �2 < 1: (�1 is the traÆc intensity on a link that has no bus passing and �2 is

the traÆc intensity on a link that has a bus passing.)

Proof : We start by analyzing the maximal arrival rate on a link
�!
ij (which has no bus

passing). From equations (2.9) and (2.13) the total arrival rate on a link
�!
ij is

�Sum1 =
Pm

k=1

Pm

i=k b(i)
�
i

k

�
(pm1)

k(1� pm1)
i�kv + 2pm2vE(L)

=
Pm

i=1 b(i)
�
i

1

�
(pm1)

1(1� pm1)
i�1v

+
Pm

i=2 b(i)
�
i

2

�
(pm1)

2(1� pm1)
i�2v

�

�

+
Pm

i=m b(i)
�
i

m

�
(pm1)

m(1� pm1)
i�mv

+2pm2vE(L)

= b(1)pm1v + b(2)
�
2
1

�
pm1(1� pm1)v + b(3)

�
3
1

�
pm1(1� pm1)

2v + � � �
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+b(m)
�
m

1

�
pm1(1� pm1)

m�1v

+b(2)
�
2
2

�
(pm1)

2v + b(3)
�
3
2

�
(pm1)

2(1� pm1)v + � � �+ b(m)
�
m

2

�
(pm1)

2(1� pm1)
m�2v

+b(3)
�
3
3

�
(pm1)

3v +b(4)
�
4
3

�
(pm1)

3(1� pm1)v+ � � �+ b(m)
�
m

3

�
(pm1)

3(1� pm1)
m�3v

+

�

�

+b(m)(pm1)
mv

+2pm2vE(L)

= b(1)pm1v + b(2)pm1( 2 � 2pm1 + pm1)v + b(3)pm1( 3 � 6pm1 + 3(pm1)
2 + 3pm1�

3(pm1)
2 + (pm1)

2)v + � � � + b(m)pm1[
�
m

1

�
(1� pm1)

m�1 + � � � + (pm1)
m�1]+

2 pm2vE(L)

= b(1)pm1v+ b(2)pm1(2� pm1)v+ b(3)pm1(3� 6pm1+(pm1)
2)v + � � �+ b(m)pm1(m�

m(m� 1)pm1 + � � � � � � �+ (pm1)
m�1)v + 2pm2vE(L)

� b(1)pm1v + 2b(2)pm1v + 3b(3)pm1v+ � � �+mb(m)pm1v + 2pm2vE(L)

= pm1v(b(1) + 2b(2) + 3b(3) + � � �+mb(m))+ 2pm2vE(L)

= pm1vE(L) + 2pm2vE(L)

= (m1 + 2m2)pvE(L)

= (2�m1)pvE(L): (2.16)

From equations (2.14) and (2.15), �Sum1 = (1 � E[(1 � pm1)
L])v + 2pm2vE(L) (the

total arrival rate on a link that has no bus passing), and �B;Sum1 = (1�E[(1� pm1)
L])v +

2pm2vE(L)+
1
K1

(the total arrival rate on a link that has a bus passing ). Since the maximal

arrival rate of �Sum1 is (2�m1)pvE(L); so the maximal arrival rate of �
B;Sum
1 is

(2�m1)pvE(L) +
1
K1
: (2.17)
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From equation (2.16), the maximal arrival rate on a link which has no bus passing

is (2 � m1)pvE(L); and the service rate on each link is 1=T: To avoid a link be always

busy, 1=T > (2 � m1)pvE(L) is needed. And to avoid the link that has a bus passing

been always busy, 1=T > (2 � m1)pvE(L) +
1
K1

is needed from equation (2.17). Then

the traÆc intensities �1 = (2 � m1)pvE(L) �1=T = T (2 � m1)pvE(L) < 1; and �2 =

[(2�m1)pvE(L)+1=K1]�1=T = T [(2�m1)pvE(L)+1=K1] < 1 are obtained corresponding

to the link that has no bus passing and the link that has a bus passing. �

Since buses are scheduled every K1 minutes, it is clear that the waiting time distribution,

B(x), for a bus is uniformly distributed and can be represented as
R K1

0
1
x
dx = 1:

Rose et al. [10] have considered the problem of �nding the waiting time distribution,

G(x); for the stationary M/G/1 queue. The Kolmogorov equation [5]

G
0

(x) =
mP
k=1

�k[G(x)�G(x�k)]; (2.18)

and its solution

G(x) = (1��)
X

rj�0:
P

j
jrj� bxc

Y
j:�j>0

e�j(x�
P

j jrj)
[��j(x�

P
j jrj)]

rj

rj !
(2.19)

were found.

For limiting distribution functions (1.3) and (1.4) to be exist, we must have P (W � x),

P (W
0

+W
00

� x) and P (W
0

+W
00

+W�(u) � x): To compute the value of G(x) we need

to determine the indices frjg in equation (2.19). A recursive procedure can be used to

�nd frjg which satis�es the inequality
P

j jrj � bxc: For example, to determine frjg that

satis�es
1P
1

jrj � b3c (i:e: r1 � 3); it is obvious that r1 = f0; 1; 2; 3g: To determine frjg

that satis�es
2P
1

jrj � b3c: It is easy to solve the inequality and list its solution in the table

r1 0 0 1 1 2 3
r2 0 1 0 1 0 0

r1 + 2r2 0 2 1 3 2 3

(r1; r2) = (0; 0); (0; 1); (1; 0); (1; 1); (2; 0); (3; 0)

Table 2.1

12



To determine frjg that satis�es
3P
1

jrj � b3c; set r1 + 2r2 = a and solve a + 3r3 � b3c

using Table 2.1: The solutions are listed in Table 2.2, and Table 2.3.

a 0 0 1 2 3
r3 0 1 0 0 0

a + 3r3 0 3 1 2 3

Table 2.2

(r1; r2) (0; 0) (0; 0) (1; 0) (0; 1); (2; 0) (1; 1); (3; 0)
r3 0 1 0 0 0

(r1; r2; r3) (0; 0; 0) (0; 0; 1) (1; 0; 0) (0; 1; 0); (2; 0; 0) (1; 1; 0); (3; 0; 0)

Table 2.3

G(x) can then be computed by the above procedures. We can rewrite (1.3), (1.4) in

terms ofG(x): Since P (W+iT � x) = P (W � x�iT ) = G(x�iT ); P (W
0

+W
00

+2T � x) =

P (W
0

+W
00

� x�2T ) = G�G
0

(x�2T ); P (W
0

+W
00

+W�+2T � x) = P (W
0

+W
00

+W� �

x� 2T ) = G �G
0

�B(x� 2T ):

Therefore, the limiting distribution functions (1.3) and (1.4) can be rewritten as

F�;�(x)=
mP
i=1

b( i) pi[mi
1G(x-iT)+

iP
j=1

�
i

j

�
mi�j

1 mj
2G(x-(i-j)T)G�G

0

(x-2T)j]

+
m�1P
k=1

mP
i=k+1

b( i)
�
i

k

�
pi�kqk[mi�k

1 G(x-(i-k)T)+

i�kP
j=1

�
i�k
j

�
mi�k�j

1 mj
2G(x-(i-k-j)T)G�G

0

(x-2T)j]G�G
0

�B(x-2T)

+
mP
i=1

b(i)G�G
0

�B(x� 2T ); and (2:20)

Fu;�(x)=
mP
i=1

b( i)pi[mi
1G(x-iT)+

iP
j=1

�
i

j

�
mi�j

1 mj
2G(x-(i-j)T)G�G

0

(x-2T)j]

+
m�1P
k=1

mP
i=k+1

b( i)
�
i

k

�
pi�kqk[mi�k

1 G(x-(i-k)T)+

i�kP
j=1

�
i�k
j

�
mi�k�j

1 mj
2G(x-(i-k-j)T)G*G

0

(x-2T)j]G
0

�B(x-2T)

+
mP
i=1

b(i)G
0

�B(x� 2T ) (2:21)
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By de�nition, the convolution integrals G �G(x) =
R x
0
G(x� u)dG(u); and G �G �B(x) =R x

0
G�G(x�u)dB(u) [8]: Hence G(x), G�G(x) and G�G�B(x) are computed, the limiting

distribution functions (1.3) and (1.4) can then be obtained.
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3 Optimal Policies for a Network with Unlimited Node

and In�nite Capacity

Suppose that the capacity of a bus is in�nite and the network has in�nite node. Assume

that the waiting time for a bus is 0 at node � when the number of nodes in the network

is in�nite. We will discuss the limiting distribution function for di�erent values p; q; m1;

m2 and K1: Assume that v = 0:05; T = 1; and the number of customers generated are

uniformly distributed on f1, 2, 3, ..., 10g. Figure 3:1�3:17 provide some simulation results

of F�;�(x) and Fu;�(x): We will discuss cases for K1 = 18; K1 = 10 and K1 = 5:

(I) K1 = 18

At node �; the arrival rate of buses is small, so the traÆc intensity on links of 2-path

are just a little larger than that on the 1-path. We observe that:

(i) The traÆc intensity on each link of 2-path is just a little larger than that on the 1-

path. It may have advantages to choose a 2-path if many customers generated.

(ii) When m1 = 0:2; F�;�(x) for p = 0:2 > F�;�(x) for p = 0:4

> F�;�(x) for p = 0:6

> F�;�(x) for p = 0:8

> F�;�(x) for p = 1:

This says as the probability of p increases, the limiting distribution function F�;�(x)

converges more slowly (see Figure 3.1).

(iii) As the probability of q increases, the car 
ows on each 2-path will be reduced, th-

erefore, customers who choose to drive will have more advantages to drive on 2�

paths.

(iv) When customers all take a bus, the waiting time for a bus is 0, therefore, to take a

bus is just like to drive a car on themselves to the destination. Therefore, the optimal

policy is p = 0:

At node u, the traÆc intensity on links of 2-path is smaller than the traÆc intensity on

the 1-path (from node u to node �). We observe that:

(i) It is better to drive than to take a bus, because the waiting time for a bus is long.

Simulation results shows that
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Fu;�(x) for p = 1 > Fu;�(x) for p = 0:6

> Fu;�(x) for p = 0:4

> Fu;�(x) for p = 0:2

In other word, Fu;�(x) decreases as p decreases (see Figure 3.2).

(ii) It will have advantages to drive on a 2-path. As an example, Figure 3.3 shows that

Fu;�(x) for p = 0:5 < Fu;�(x) for p = 0:2 if x > 5: Therefore, customers should dr-

ive on a 2-path if the number of customers generated from a source is not small.

From (i) and (ii), customers should have advantages to drive on 2-paths.

Figure 3.1: K1 = 18; node �; m1 = 0:2; p = 0:2; 0:4; 0:6; 0:8; 1

Figure 3.2: K1 = 18; node u; m1 = 0:2; p = 0:6; 0:4; 0:2; 1
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Figure 3.3: K1 = 18; node u; p = 0:6; m1 = 0:2; 0:5

(II) K1 = 10

For K1 = 10; the total arrival rate on a link which has a bus passing is larger than that

for K1 = 18: At node �; if customers choose to drive cars on a 2-path, they may drive either

on links of 2-path which has a bus passing or on its second link of 2-path which has a bus

passing. Hence on links of 2-path from node � to node � there still have larger arrival rate

than the 1-path. We observe that:

(i) When all customers drive cars, the traÆc intensity on links of 2-paths is large. T-

herefore, if there are not many customers generated from a source, customers shou-

ld choose a 1-path.

(ii) As the probability of p decreases, more customers choose to take a bus and traÆc

intensity will reduce. Therefore, it has advantages to drive on 2-paths as p decreases

(see Figure 3:4� 3:5).

(iii) When m1 = 0:2; F�;�(x) for p = 0:2 > F�;�(x) for p = 0:4

> F�;�(x) for p = 0:6

> F�;�(x) for p = 0:8:

It is seen that the limiting distribution function F�;�(x) converges more quickly if

more customers choose to take a bus (see Figure 3.6).

From (i) and (ii), customers should drive on 2-paths unless fewer customers generated

from node �. From (iii), customers should take a bus. Therefore, the optimal policy is

when p = 0.
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At node u, the 1-path from node u to node � has a bus passing. If a customer chooses

to drive on a 2-path, it is possible that a customer driving on a 2-path that has no bus

passing or driving on a 2-path that has no bus passing on 2-1 path but has a bus passing

on 2-2 path. So the traÆc intensity on links of 2-path is smaller than that on the 1-path

at the node u: We observe that:

(i) It may have advantages to choose a 2-path when the number of customers generat-

ed from the node u is not small. For example, when p = 0:6, the limiting distribution

function Fu;�(x) for m1 = 0:2 is better than that for m1 = 0:8 if x > 9. Moreover,

for p = 1, the limiting distribution function Fu;�(x) for m1 = 0:2 is better than that

for m1 = 1 if x > 6 (see Figure 3:7� 3:8).

(ii) When m1 = 0:2; Fu;�(x) for p = 1 < Fu;�(x) for p = 0:8 if x > 9;

Fu;�(x) for p = 0:8 < Fu;�(x) for p = 0:6 if x > 10;

Fu;�(x) for p = 0:6 < Fu;�(x) for p = 0:4 if x > 3; and

Fu;�(x) for p = 0:4 < Fu;�(x) for p = 0:2 if x > 1.

These imply that as the probability that a customer chooses to drive is decreasing, the

limiting distribution function Fu;�(x) converges more quickly (see Figure 3:9� 3:12).

From (i), customers should choose a 2-path generally. From (ii), for customers who

drive on 2-paths with large probability, the limiting distribution function Fu;�(x) converges

quickly if the probability q that customers choose to take a bus increasing, therefore, the

optimal policy is p = 0.

Figure 3.4: K1 = 10; node �; (p;m1) = (1; 0:2); (0:8; 0:2); (1; 1)
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Figure 3.5: K1 = 10; node �; (p;m1) = (1; 1); (0:6; 0:2); (0:4; 0:2)

Figure 3.6: K1 = 10; node �; m1 = 0:2; p = 1; 0:8; 0:6; 0:4; 0:2

Figure 3.7: K1 = 10; node u; (p;m1) = (0:6; 0:2); (0:6; 0:8)
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Figure 3.8: K1 = 10; node u; (p;m1) = (1; 1); (1; 0:2)

Figure 3.9: K1 = 10; node u; (p;m1) = (1; 0:2); (0:8; 0:2)

Figure 3.10: K1 = 10; node u; (p;m1) = (0:8; 0:2); (0:6; 0:2)
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Figure 3.11: K1 = 10; node u; (p;m1) = (0:6; 0:2); (0:4; 0:2)

Figure 3.12: K1 = 10; node u; (p;m1) = (0:2; 0:2); (0:4; 0:2)

(III) K1 = 5

Each 2-path from node � to node � has a bus passing. The total arrival rate on each

2-path is larger for K1 = 5 than that for K1 = 10 or K1 = 18: We observe that:

(i) When the probability that a customer takes a bus increases, the total arrival rate on

links of 2-path will decrease, therefore, customers will have advantages to choose 2-

paths. For example, when m1 = 0:2; the limiting distribution function for p < 1 co-

nverges quickly than that for p = 1 (see Figure 3:13� 3:14).

(ii) If all customers drive cars (p = 1), then the limiting distribution function will conv-

erge more slowly if more customers drive on 2-paths. As an example, Figure 3.15

shows that:

F�;�(x) for m1 = 0:2 < F�;�(x) for m1 = 0:4; and
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F�;�(x) for m1 = 0:4 < F�;�(x) for m1 = 1:

(iii) As the probability of a customer chooses to take a bus increases, the total arrival

rate on links of a 2-path will decrease. Since the waiting time for a bus is 0, custo-

mers who take a bus are as quickly as a customer drives on a 2-path. Therefore,

if customers all take a bus, the traÆc intensity will reduce and the end-to-end de-

lay time will also reduce.

At node u; if a customer chooses to drive a car on a 2-path, customers either driving on

a 2-path that has no bus passing or driving on a 2-path that has a bus passing on the 2-2

path. The waiting time for K1 = 5 is smaller than that for K1 = 10 or K1 = 18; therefore,

the arrival rate for a bus is large. The link from the node u to the node � has a bus passing,

the traÆc intensity on this 1-path is then large. We observe that:

(i) It may have advantages to choose a 2-path than the 1-path.

(ii) When p = 1, more customers choose to drive on a 2-path, the limiting distribution

function Fu;�(x) will converge more quickly.

(iii) If the number of customers generated from the node u is not large, it is better to

choose a 1-path (see Figure 3.16).

(iv) If most of the customers drive by themselves, for example, Fu;�(x) for p = 0:8 or

0:6 (m1 = 0:2) is better than that for p = 1 (m1 = 0:2) only if x is large. As the

probability p decreases, Fu;�(x) will increase. As an example, Fu;�(x) for p = 0:2

(m1 = 0:2) > Fu;�(x) for p = 1 (m1 = 0:2) if x � 2 (see Figure 3.17): As the proba-

bility p decreases, Fu;�(x) converges more quickly.

From (i), (ii), (iii), and (iv), customers should drive on a 2-path rather than on a 1-

path, and customers choose to take a bus will have advantages than to drive on 2-paths.

Therefore, the optimal policy is p = 0
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Figure3.13: K1 = 5; node �; m1 = 0:2; p = 1; 0:8; 0:6; 0:4; 0:2

Figure3.14: K1 = 5; node �; (p;m1) = (1;1),(0:8; 0:2); (0:6; 0:2); (0:4; 0:2)

Figure3.15: K1 = 5; node �; (p;m1) = (1; 1); (1; 0:4); (1; 0:2)
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Figure 3.16: K1 = 5; node u; (p;m1) = (1; 1); (1; 0:2); (0:2; 0:2); (0:6; 0:2)

Figure 3.17: K1 = 5; node u; (p;m1) = (1; 0:2); (0:8; 0:2); (0:6; 0:2); (0:2; 0:2); (0; 0)
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4 Optimal Policies for a Network with Finite Node

and In�nite Capacity

Assume that the capacity of a bus is in�nite and the network has �nite number of nodes.

From equation (2.1), we know that the arrival rate with k customers on a link which has

no bus passing is �k;N =
Pm

i=k b(i)
�
i

k

�
pk[mk

1(1� pm1)
i�k + 2m2(m2;N )

m�1(1 � pm2;N )
i�k]

v: When the number of nodes of the network decreases, the arrival rate will increase ( i:e.,

�k;N becomes larger as the term m2;N = 1�m1

2N�2
of �k;N becomes larger). Figure 4:1 � 4:4

(v = 0:05, T = 1) provide evidences that F�;�(x;N) � F�;�(x;N
0

) if N < N
0

: It is clear

that as the number of nodes of the network decreases, the probability that two customers

driving on the same 2-path (m2m2;N = m2
1�m1

2N�2
) will increase. It then will take more travel

time due to more customers joining the same 2-path queue. Hence q and m2 will decrease

as N decreases. If the number of nodes of the network is �nite, we know that the last car

of the same source joining the queue with length k has to wait for at least k� 1 time units

before departure. If the number of nodes of the network is in�nite, the car on each 2-path

may have zero waiting time. When p = 1 and m1 = 1, F�;�(x) and Fu;�(x) are independent

on N:

When the network has �nite number of nodes, the limiting distribution functions (1.3)

and (1.4) are no longer applicable, we will add some conditions to build the limiting distri-

bution functions (1.3) and (1.4).

At node �; suppose that customers who take a bus traverse on a speci�c 2-path (� !

u! �). As the number of nodes decreases in the network, the probability that customers

drive on the same 2-path increases. The probability that a speci�c customer drives on a

speci�c 2-path is m2;N and the transmission time is 2T: The probability that two speci�c

customers drive on a speci�c 2-path is (m2;N)
2 and the transmission time is 3T: In general,

the probability that k speci�c customers drive on a speci�c 2-path is (m2;N )
k and the

transmission time is (k + 1)T:

Let Ak be the probability that k customers drive on a speci�c 2-path such that the

traveling time is less than or equal to x: Then A1 = m2;N P (W
0

+W
00

+ 2T � x); A2 =

(m2;N)
2 P (W

0

+W
00

+ 3T � x); in general, Ak = (m2;N)
k P (W

0

+W
00

+ (k + 1)T � x):

Let Bk be the probability that k speci�c customers drive on 2-paths such that the total
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traveling times are less than or equal to x: Since there are 2N + 1 nodes in the network,

every customer chooses a 2-path independently from its source to its destination. The total

number of 2-paths is 2N � 2 for each di�erent pair of source and destination. Assume that

any node may generated at most 10 customers at any instant and the number of nodes of

the network is large than 12. Then

B1 = P 2N�2
1 A1;

B2 = P 2N�2
2 (A1)

2 + P 2N�2
1 A2;

B3 = P 2N�2
3 (A1)

3 + P 2N�2
3 C3

1A2A1 + P 2N�2
1 A3;

B4 = P 2N�2
4 (A1)

4+ P 2N�2
2

C4
2
C2
2

2!
(A2)

2+P 2N�2
3

C4
2
C2
1
C1
1

2!
A2(A1)

2+P 2N�2
2 C4

3A3A1+P 2N�2
1 A4;

B5 = P 2N�2
5 (A1)

5 + P 2N�2
3

C5
1
C4
2
C2
2

2!
A1(A2)

2 + P 2N�2
3

C5
3
C2
1
C1
1

2!
A3(A1)

2 + P 2N�2
2 C5

3C
2
2A3A2+

P 2N�2
2 C5

1A4A1+P
2N�2
1 A5;

B6 = P 2N�2
6 (A1)

6 + P 2N�2
3

C6
2
C4
2
C2
2

3!
(A2)

3 + P 2N�2
4

C6
3
C3
1
C2
1
C1
1

3!
A3(A1)

3 + P 2N�2
3 C6

3C
3
2C

1
1A3A2A1

+P 2N�2
2

C6
3
C3
3

2!
(A3)

2+P 2N�2
3

C6
4
C2
1
C1
1

2!
A4(A1)

2+P 2N�2
2 C6

4C
2
2A4A2+P

2N�2
3

C6
2
C4
2

2!
(A1)

2(A2)
2+

P 2N�2
2 C6

5C
1
1A5A1 + P 2N�2

1 A6;

�

�

B10 =

P 2N�2
10 (A1)

10+ P 2N�2
9 C10

2 A2 (A1)
8+ P 2N�2

8
C10
2
C8
2

2!
(A2)

2 (A1)
6+ P 2N�2

7
C10
2
C8
2
C6
2

3!
(A2)

3 (A1)
4+

P 2N�2
6

C10
2
C8
2
C6
2
C4
2

4!
(A2)

4(A1)
2 +P 2N�2

5
C10
2
C8
2
C6
2
C

4
4
2
C2
2

5!
(A2)

5 +P 2N�2
8

C10
3
C7
1
C6
1
C5
1
C4
1
C3
1
C2
1
C1
1

7!
A3(A1)

7+

P 2N�2
7 C10

3 C7
2A3A2(A1)

5+P 2N�2
6

C10
3
C7
2
C5
2
C3
1
C2
1
C1
1

2!3!
A3(A2)

2(A1)
3+ P 2N�2

5
C10
3
C7
2
C5
2
C3
2

3!
A3(A2)

3A1+

P 2N�2
6

C10
3
C7
3
C4
1
C3
1
C2
1
C1
1

2!4!
(A3)

2(A1)
4+P 2N�2

5
C10
3
C7
3
C4
2

2!
(A3)

2A2(A1)
2+P 2N�2

4
C10
3
C7
3
C4
2
C2
2

2!2!
(A3)

2(A2)
2+

P 2N�2
4

C10
3
C7
3
C4
3
C1
1

3!
(A3)

3A1+P
2N�2
7

C10
4
C6
1
C5
1
C4
1
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1 A10:

In equations Bi; i = 1; 2; 3; :::; 10; we have considered all the possibilities that customers

drive on all 2-paths when the number of nodes of the network is �nite. The limiting

distribution functions (1.3) and (1.4) can also be rewritten as:

F�;�(x;N) =
P

i b(i) p
i[mi

1P(W+iT�x)+
Pi

j=1

�
i

j

�
mi�j

1 mj
2P(W+(i-j)T�x)Bj]

+
Pm�1

k=1

Pm

i=k+1 b(i)
�
i

k

�
pi�kqk[mi�k

1 P(W+(i-k)T�x)+

Pi�k
j=1

�
i�k
j

�
mi�k�j

1 mj
2P (W+(i-k-j)T�x)Bj]P(W

0

+W
00

+W�+2T�x)

+
P

i b(i)q
iP (W

0

+W
00

+W�+2T � x); and (4:1)

Fu;�(x;N) =
P

i b( i) p
i[mi

1P(W+iT�x)+
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i

j
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mi�j

1 mj
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+
P

i b( i)q
iP(W

00

+W u+T�x). (4:2)

In Figure 4:1� 4:4, we �nd that as the number of the nodes decreases, the distribution

functions (4.1) and (4.2) converge slowly than the limiting case. The above phenomenon is

more obvious when the value of m2 is large. This implies that customers should drive on a

1-path rather than a 2-path.

Figre 4.1: K1 = 5; node �; (p;m1) = (0:4; 0:2)
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Figre 4.2: K1 = 5; node �; (p;m1) = (0:8; 0:2)

Figre 4.3: K1 = 18; node �; (p;m1) = (1; 0:2)

Figre 4.4: K1 = 10; node u; (p;m1) = (0:4; 0:2)
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5 Optimal Policies for a Network with Unlimited Node

and Finite Capacity

Consider the situation that the network has in�nite node and the capacity of a bus is �nite.

We will discuss the case K1 = 3 and the transmission time T is 1 at the node u. At node �;

the number of 2-paths is in�nite, there is always a bus available when customers generated.

So there will be no a�ect if the capacity of a bus is reduced and the limiting distribution

function F�;�(x) will be the same as the case when the capacity of a bus is in�nite. At

the node u, there is a bus scheduled every three minutes and customers that take a bus

need to wait until all customers that generated from the node u preceded them get on

to the bus. Let Zk =
mP
i=k

b(i)
�
i

k

�
qkpi�kv be the probability that k customers generated

from the node u in one minute and wait to take a bus. Let Ek be the probability that

there are k seats available on a bus. Suppose that the capacity of a bus is 2m, we obtain

E0 = (Zm)
2, E1 = 2Zm�1Zm, E2 = 2ZmZm�2 + (Zm�1)

2, E3 = 2(ZmZm�3 + Zm�1Zm�2),

E4 = 2(Zm�1Zm�3+ZmZm�4)+(Zm�2)
2, and E5 = 2(ZmZm�5+Zm�1Zm�4+Zm�2Zm�3). In

general, Ek =
kP

a=0

Zm�aZm�k+a be the probability that there are k seats available on a bus.

The limiting distribution function (1.4) can be easily derive as:
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Es)]: (5:1)

As the capacity of a bus decreases, and the rate of customers generated from node u is

large, customers who wait to take a bus may have no seats. So the limiting distribution

function converges slowly than the case when the capacity of a bus is in�nite (see Figure

5:1� 5:2).
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Figure 5.1: v = 1; K1 = 3; node u; p = 0

Figure 5.2: v = 0:8; K1 = 3; node u; (p;m1) = (0:2; 1)
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6 Conclusions

From the discussions in the previous sections, we know that if there are less customers

generated from a node and the waiting time of a bus is not small (for example K1 = 18)

, it is generally better for a customer to drive on a 1-path than take a bus or drive on a

2-path. For K1 = 5 or K1 = 10; if the capacity of a bus is in�nite, the optimal policy is

p = 0 (all customers take a bus). In these two cases the waiting time for a bus is small.

But if the waiting time of a bus is large (for example K1 = 18), we will choose to drive

rather than to take a bus. It is also clear that as the probabilities of customers taking

a bus increase, the traÆc intensity on 2-paths would decrease. Therefore, customers that

choose to drive would have advantages to drive on a 2-path. When the number of nodes of

network decreases, the probability of a customer drive on a 2-path should decrease. So the

optimal policy will tend to p = 1 (if the waiting time for a bus is large) or p = 0 (if the

waiting time for a bus is small). It is obvious that as the capacity of a bus decreases, the

probability of a customer taking a bus would also decrease. In reality, customers should not

drive if it is more convenience to take a public transportation. In this model, we assume

that the transmission time T is �xed and ignore the distance between each link
�!
ij . It

should incorporate considerations of the distance function or variable transmission time in

the model further to simulate the real situations.
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