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Abstract il

Abstract

In this thesis, we are concerned with the computation of the Hankel norm for stable linear
time-invariant systems with multiple input delays. First of all, the stability of delay systems
15 investigated by using the concept of stability equivalence. Next, the Hankel operator
of linear systems with feedthrough-type input delays and its adjoint are constructed. The
compactness of this operator is then examined. Afterward, the norm computation of Hankel
operator is studied in two different approaches: one is based on definition of induced operator
norm, and the other is based on the fact that the value of operator norm is equal to its largest
singular value. The result shows that the Hankel norm is just the largest root of an algebraic
equation which actually is the determinant of certain complicated matrixz including the effect

of time-length and number of delays. Some illustrative examples are presented.

Keywords: delay systems, stability, Hankel operator, singular value, feedthrough delay
AMS subject: 47B35, 93B60, 93C23, 93D05
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Notations

D(T)

exp, e

1£1]2
G(s)
G
H(t)
H*(C)
4o

I

L0, 00)

Meaning
A® B, Knonecker product of matrices A and B
21 D 2o, direct sum or Knonecker sum of z1 and zo

the differentiation

A
I|Al|, the induced norm of a matriz A which is defined as ||Al| = sup Az}

w20 ||2]
< u,v >pg, the inner product of u and v on the Hilbert space H

the (k, k) element of the matriz A

the set of complex numbers

all complex numbers with real part large than 0

all complex numbers with real part less than 0

the Banach space of continuous functions mapping the interval [=T, 0] into
R™ with the topology of uniform convergence

domain of the operator T

exponential function

it = ([ urconar)

the transfer function of the system G

the Hankel norm of the system G

the Heawviside function

Hardy space of square integrable functions on C, with values in C
Hardy space of bounded holomorphic functions on C, with values in C
the identity matriz

class of Lebesque measurable complex-valued functions with

[ f@)]dt < oo
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x Notations

L?(jR) frequency-domain 2-space L?
L? 2 L?(—00,00) class of Lebesgue measurable real-valued matriz functions with

JZo IF @2t < oo

L% £ £2]0, 00) class of Lebesque measurable real-valued matriz functions with

Jo N @)1Pdt < oo

L2 £ [%(—00,0] class of Lebesgue measurable real-valued matriz functions with

Lo 1 @)2dt < oo

L2(JR) {G(5) : |Glloe < 00}

Po(Q L(Z1,2Z5))  functions in P(Q; L(Z1, Za)) with [, ||F(t)||Pdt < oo

P, P_ orthogonal projection, e.g. if y € L2, then Py(y) € L3, P_(y) € L2

R the set of real numbers

R <™ space of n x m real matrices

RH™, RH™ sets of real-rational functions analytic in the close right and left half planes,
respectively

s.t. such that

U the set of all admissible control

(u); the j component of the vector u

r the Hankel operator of the system G

r the adjoint of the Hankel operator T’

XF simple function defined on set F, xp(t) =1, if t € F; xr(t) = 0, otherwise

ox, du, O\ the variations to the variables x, u and X\, respectively

d(t) the Dirac delta function



Chapter 1
Introduction

In many engineering applications, processes are described by complex models which
are difficult to analyze and difficult to control. Although reduction of the order of the model
overcomes some of these difficulties, it is quite possible to incur a significant loss of accuracy.
Therefore, the purpose of model reduction is to replace the plant to be controlled with one
of the lower-order possible model while maintaining an overall acceptable degradation in
performance. The key of this problem can be stated as follows: given an m X m transfer
function G € RH® with McMillan degree n, find an m x m transfer function G € RH>®

with McMillan degree no more than k and k < n, such that |G — G| is minimized.

The truncated finite dimensional approrimation is constructed from the Hankel singu-
lar values and vectors which has been studied since 1970’s [1]. There are many research
results in this problem, e.g. [8, 30, 31], providing good algorithm to construct the approz-
imate model. The approzimation of infinite-dimensional linear time-invariant system by
lower-order finite-dimensional system is also of great important in the problems of robust
control. Most of the results emphasize on delay systems, e.g. [3, 4, 6, 9, 10], which belongs
to the class of infinite-dimensional systems but with simple structure such that numerical

stmulation can be easily conducted.

The input delay systems can be characterized according to whether there exist feedthrough
terms in output equations or not. For dynamical systems with feedthrough delays, Pandolfi
[26, 27] has established the Hankel operators for this type of systems with unit delay time
and tried to solve the singular values of this operator. However, it is not succeeded and only

a mized system of differential-difference and differential equations was derived. On the other
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hand, Ohta et. al. [21, 22, 23, 2/] have derived the formulas for the singular values and
vectors for the systems which contain the input delays in state equation only. However, Yeh
and Huang [12, 28] provide a different formula in terms of matriz determinant to compute
the Hankel singular values for stable linear systems with single input delay appeared in both
state and output equations. In this study, we extend the method of Yeh and Huang to the
stable linear systems with multiple input delays.

Before computing the Hankel norm, we must consider the stability issue for delay sys-
tems. It is well known that the asymptotically behavior of the delay systems is determined
from the real part of roots of the characteristic equation [11]. Although there are many
researches in the field , e.g. see the survey paper by Kharitonov [19], the stability equiva-
lence concept by Huang [13] is used to study the linear systems with multiple state delays.
Delay systems are first transformed into a delay-free one. When the solution of certain
matriz equation exists, Lyapunov function from the delay-free system can be selected to be
the Lyapunov function for stability analysis of the original system.

Once the stability property of delay systems is established, we can compute the Hankel
norm of the systems with multiple state and input delays by solving a set of differential-
algebraic equation (DAE). Unfortunately, it is very difficult to obtain the closed form so-
lution for the DAE when the state delays present. Thus in this thesis, only the dynamical
systems with multiple input delays will be considered for the Hankel norm computation.

The following outlines the contents of this thesis. In Chapter 2, we introduce math-
ematical preliminaries and some control concepts for linear time-delay systems, like con-
trollability, observability, transfer function, and the minimum principle, for later use. In
Chapter 3, the stability in linear systems with multiple delays is studied. Within Chapter
4, Hankel operator and its adjoint for linear systems with multiple feedthrough input delays
are conducted. In Chapter 5, the method to compute Hankel norm, Hankel singular value
and vector is established and some numerical examples are used to illustrate the theoretical

method. Finally, the conclusion is addressed.



Chapter 2
Mathematical Preliminaries

Some mathematical relationships and control concept in linear time-delay systems for

later use are reviewed here.

2.1 Hankel operators

Let G(s) denote the transfer function of certain dynamical system with h(t) being the cor-

responding impulse response in L'(0,00), i.e.,
G(s) = /0 Chetdt,  sec (2.1)
The associated Hankel operator is defined to be
(Tw)(t) = /Ooo h(t + T)v(r)dr, t>0 (2.2)

for v e L£?0,00). We use L2 and L? to denote L]0, 00) and L*(—o0, 0], respectively, for
simplicity. Now for any G(s) € L>(jR), we may define the Hankel operator on H*(C) by

(Fav)(s) = Pr(G(s)v(=s)) (2.3)

for v(s) € H?*(C) where Py is the orthogonal projection from L*(jR) onto H?*(C). For
G € H>®, T'¢ is equivalent to T, i.e. ||G||lg = ||Tql| = [|IT||. By letting u(r) = v(—7) into
(2.2), the Hankel operator T' could be re-expressed as

T : L%(—00,0] — £2[0,00) : u(-) — y(-) = (Cu)(")

3
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with
y(t) = (Tu)(t) = / Wt — Fyu(r)dr (2.4)

foru e L2.

Some properties related to linear operators are summarized as follows.

Definition 2.1 [5] Let F be a domain in C, and let f be a function defined on F with
d

values in C. The function f is holomorphic on F if d—f(so) exists for every sg in F. The
s

function is said to be entire if it is holomorphic on C.

Definition 2.2 [16] Let X and Y be normed spaces and T : D(T) — Y is a linear
operator, where D C X. The operator is said to be bounded if there is a real positive

number ¢ such that
| Tz|| < cllz]]

Theorem 2.1 [16] Let T : D(T) — Y be a linear operator, where D C X and X and Y

15 normed spaces. Then T s continuous if and only if T is bounded.

Definition 2.3 [7] A bounded linear operator A : X — Y, acting between Banach spaces

X and Y, is called a Fredholm operator if its range ImA is closed and the numbers
n(A) =dimker A d(A) = dim(Y/ImA)
are finite.

Definition 2.4 [16] Let X and Y be normed spaces. An operator T : X — Y is called a
compact linear operator (or completely continuous linear operator) if T is linear and if for
every bounded subset M of X, the image T'(M) is relatively compact, that is, the closure
T (M) is compact.

2.2 Stability of time-delay systems

Let C = C([-T,0],R™) denote the Banach space of continuous functions mapping the in-
terval [T, 0] into R™ with the topology of uniform convergence. Designate the norm of an

element ¢ in C by ||@||l« = sup ||¢(7)|| where ||-|| denotes the vector norm in R™. Suppose
0]

Te|-T
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f R x C — R" is continuous and consider the retarded functional differential equation

(RFDE)

z(t) = f(t,xy), t>1

(2.5)
z(to+7) = (1), V1€e[-T,0]

A general approach to stability analysis is based on the Lyapunov’s direct (second) method.
There are two different ideal how one can apply this method to delay systems. In the first

one, the state of a delay system is defined as the time depending trajectory segment
z : [In, 0] > R 17 = ay(7) = 2(t +7) (2.6)

Here instead of the classical Lyapunov functions it is proposed to use Lyapunov functional
(as a function of x;). This approach is called Lyapunov-Krasovskii method. A second idea is
based on classical Lyapunov functions and uses a special estimation procedure which allows
to exclude delay states in the derivative of the Lyapunov functions. This procedure has
been proposed as Lapunov-Razunmikhin method. Those who have interested in the stability
analysis of time-delay system can refer to Kharitonov’s survey paper [19] and references
there in.

Let z(t) = (t,¢) be the solution of RFDE. The definition of stability is discussed as

follows.

Definition 2.5 A state z, is said to be an equilibrium state if

U(to, ¢) = ze = V(t, ) =z, VL > 1o (2.7)
where t; is the initial time.

Definition 2.6 The equilibrium state ., = 0 is stable in the sense of Lyapunov or sim-

ply stable as t — oo if for any positive numbers ¢ and €, there exists a d(g, €) > 0 such that
< e wh L <
torgtaixooﬂx(t)ﬂ < € whenever ||¢|. <0
Definition 2.7 The equilibrium state ., = 0 is uniformly stable if for any € > 0, there

exists a 6 = d(e) >0

< <
ax |z(t)|] < e whenever ||p||. < d
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Definition 2.8 The equilibrium state xz, = 0 is asymptotically stable, if
1. it is stable,

2. every solution which satisfies |[|¢||. < § also satisfies 1tlimx(t) = 0.
—00

Definition 2.9 The equilibrium state x, = 0 is asymptotically stable in the large, if
1. it is stable,

2. every solution which satisfieslim x(t) = 0, for all arbitrary ¢(r), 7 € [T, 0].

t—00

If we use the Lyapunov-Kransovskii method, the relative theorem is stated the following :

Theorem 2.2 [29] (Lyapunov-Kransovskii Theorem) Suppose f : Rx C — R" takes Rx
(bounded sets of C) into a bounded sets of R*, and «, 3,7 : Rt — R be continuous and
nondecreasing functions, «(s) and 3(s) are positive for s > 0, and «(0) = 5(0) = 0. If
there is a continuous function V- : R x C — R such that

a(lle(0)]) <Vt ¢) < B(ll#ll)

V(t,¢) < =7(ll¢(0)]D)

then the solution x = 0 of (2.5) is uniformly stable. If a(s) — oo as s — oo, the solution
of (2.5) are uniformly bounded. If v(s) > 0 for s > 0, then the solution x = 0 is uniformly
asymptotically stable.

If we use the Lyapunov-Razumikhin method, the relative theorem is stated the following :

Theorem 2.3 (Lyapunov-Razumikhin Theorem) Suppose f : R x C — R" takes Rx
(bounded sets of C) into a bounded sets of R*, and «, 3,7 : Rt — R be continuous and
nondecreasing functions, «(s) and 3(s) are positive for s > 0, and «(0) = 5(0) = 0. If
there is a continuous function V- : R x C — R such that

a(|lz]]) < V(t, z) < B(]l]])

V(t,¢) < —(|l=l))

V(t+rxt+71)) <o(V(tx(t)))

Here 6(s) is a continuous function such that 6(s) > s for s > 0. Then the solution x = 0

of (2.5) is asymptotically stable.
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Suppose D : C — R" is a given continuous function and atomic at zero [11], a more

general class of neutral delay differential equation (NDDE) is

2D(x) = f(ta), t>t

(2.8)
x(to+71) = (1), Vr € [-T,0]
The function D is called difference operator for NDDE.

Definition 2.10 [29] Suppose D : C — R” is linear, continuous, and atomic at zero;
and let Cp = {¢ € C : D¢ = 0}. The operator D is said to be stable if the

D(yt)zoa tZO, y():wECDa
is uniformly asymptotically stable.

In this thesis, we use the following theorem to prove the stability.

Theorem 2.4 [29] Suppose D is stable, «(s),(s),v(s) : Rt — R* are continuous and
nondecreasing functions, a(s) and B(s) are positive for s > 0, and «(0) = 3(0) = v(0) = 0.

If there is a continuous function V. : R x C — R such that

a||Dell) <V (t, 6) < B(ll¢ll+)
V(t,¢) < =v(|Dgl))

then the solution x =0 of (2.8) is uniformly stable. If a(s) — oo as s — oo, the solution
of (2.5) are uniformly bounded. If v(s) > 0 for s > 0, then the solution x = 0 is uniformly
asymptotically stable.

2.3 Control concepts in linear time-delay systems

Consider linear time-delay (LTD) systems with the state and output equations of the form:

WE

(1) = +ZA = Toj) + Bo(H)u(t) + ) B;(t)ult = Toy)
! (2.9a)

D;(t)u(t — Tuy)

<.
Il

S
y(t) = +ZC z(t — Tyj) + Do(t)u(t) +

-

1

j
where A(t),C(t), Bo(t), Do(t), A;(t), Bj(t), Cj(t), and D;(t) are continuous matriz value

functions of time, delay time Ty;, T,; are positive constants, with T, ., > Ty, T, > Ty,

Uj+1
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and Tyny = Tyn, where j = 1,2,--- | N. If the system is linear time-invariant (LTI), then
the matrices A, C, By, Dy, Aj, Bj, C; and D; are constant, where j =1,2,--- ,N. The initial
condition of Y, is given by

~

24, (1) = (1), 7€ [-T,0] (2.9b)

where ¢ € C, T = Tin.
When u = 0, the state equation becomes

N

(t) = A(D)z(t) + Y A;(t)a(t — Tyy) (2.10)

7=1
with initial condition given by (2.9b) is called the homogeneous state equation or unforced

state equation.

Definition 2.11 The state of #(t) = A(t)x(t) is asymptotically stable on R if and only if
there exist M > 0 and a > 0 such that

[2(t, o)l < Me—o(t=to)
for all t > to, which || - || is matrix norm and

B(t, ) = exp ( /t:A(T) dT>

One of the methods of describing a LTI system in the input-output form is using the transfer

function. Taking the Laplace transformation on the both sides of given system (2.9a), we

get
N N
SJA?(S) = Ai"(s) + ZAjﬁj(s)eiszs + B[)’ll(t) + ZBj’LAL(S)eiT“]‘s
— —
g(s) = Cz(s)+ Z Cji(s)e™ 1295 + Doa(t) + ij@(s)e—Tujs
j=1 j=1

where &(s),u(s), and §(s) denote the Laplace transformations of the state x(t), input u(t),
and output y(t), respectively. Therefore, the system’s transfer function (say Gq(s)) is given
by

-1

N N
(B() + ZBje_T”js) + (D() + ZDje_T”js)

N
Ga(s) = (C+ > Cie T5%)

N
sI— (A4 Ajer %)
7=1 7j=1




2.3. CONTROL CONCEPTS IN LINEAR TIME-DELAY SYSTEMS 9

Controllability and observability are two fundamental structural attributes of any control
systems. They deal, respectively, with the relationships between the input and the state, and
between the state and the output of the system as shown in Figure 2.1. More specifically,

their meanings are follows:

1. system controllability : does there exist a control u which can transfer the initial state

xo of system to any desired state x; within a finite period of time ty ¢

2. system observability : does the initial state xo of the system be always identified by

observing the output y and input u over a finite time ?

The concept of stability and controllability on delay-free system and delay system is different.
The effect of delay is shown in Figure 2.2.

Observability

o

input output

u(t) state x y(t)

Controllability
Figure 2.1: Concept for controllability and observability of linear TD systems

Considering the linear TD system characterized by (2.9a) and (2.9b), if u is measurable

and bounded on every finite time interval, it will be called an admissible control.

Let the solution of (2.9a) together with (2.9b) is denoted by x(t,u;to, @) for given control
input u(t) and initial function ¢(7), 7 € [ty — T, t,]. Let K € C and K; C C.

Definition 2.12 System given in (2.9a) and (2.9b) is controllable to a function o) € K
w.r.t. the space of initial function Ky if for any given initial function ¢(-) € K7, there exists

a finite time #; > to, and an admissible control u(t), ¢ € [ty — T’ ] s.t.

x(ty + 1, u5te, ) = (1), TE [—T, 0]
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Stability :

Delay-free system :

Delay system :

x(7)

MATHEMATICAL PRELIMINARIES

Controllability :

Delay-free system :

3w in finite time 7

o .fo

Delay system :

3w in finite time 7

limax (1) =0 Vr € [-2T,0] ?
t—o00

Figure 2.2: The effect of delay on stability and controllability
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Definition 2.13 If system (2.9) is controllable to all functions in K, then it is said to be
controllable to the space K.

Definition 2.14 If a(-) = 0, then the system is said to be controllable to the origin, or

fixed-time completely controllable.

Definition 2.15 If t; is constant, the corresponding type of controllability is said to be

uniform.

For linear delay-free system, the controllability to the origin is equivalent to the control-
lability to any function. However, in general, this is not true in the case of linear TD

systems.

Definition 2.16 The system given in (2.9a) and (2.9b) is observable in [ty, 1] if the ini-
tial function ¢(-) € ¥ in [ty — T, to] can be uniquely determined from the knowledge of the

control u(-) over [ty — T, t;] and observation y(-) over [ty, t].

Those who are interested in the controllability and observability criteria can refer to [17]

for more detail discussion.

In this thesis, we concern about the system with some state and input delay times which are

commensurate, i.e. T,; =T,; = jT, for simplicity.

2.4 The minimum principle for time-delay systems

Since the matrixz Dy does not affect the value of Hankel norm, we let Dy = 0. Thus the

system for studying Hankel norm computation is given by

#(t) = Ax(t) + Bou(t) + > _ Bju(t — jT), x(~00) =0

3 N j=1 (2.11)
y(t) = Cx(t)+ Y Dju(t —jT), t € (—00,0)

7=1
The variational principle is one of the method to compute the Hankel norm of the system
Y. We establish the minimum principle for time delay systems here. Let us consider a

nonlinear dynamical system with commensurate input delays :

z(t) = f(z(t),z(t =T),...,x(t = NT),u(t),u(t = T),...,u(t — NT),t) (2.12)
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with initial state and control functions given by
x(to+7) =¢(1), ulto+7)=0¢u(r), —NT <7<0 (2.13)

where ty is the initial time, and ¢(T) and ¢, (7) are continuous functions on [—NT,0].

Let the positive cost function with fized terminal time t; be defined by

J(w,u) = /tf Fe(t),2(t—T),...,x(t— NT),u(), u(t - T),...,u(t — NT),t)dt (2.14)

to

where F(-) is the cost function’s intergrand. Let the set of all admissible control be denoted
by U. The object of the optimal control is to find an optimal control function u, € U
which satisfies the dynamic constraint (2.12) associated with (2.13) while minimizing the

cost function (2.14).

This optimization problem is solved by studying second-order variations of J resulting
from the first-order variations in u and x, and requiring that these be zero at optimum. The

necessity condition for this optimum is stated as follows.

Theorem 2.5 Consider the nonlinear dynamical system given in (2.12). We define a

Hamiltonian function H = F+ T f. Suppose the optimal value of the cost function is given

by

J(zy, uy) = minJ(z, u) (2.15)

ueU

Then the optimal control u,, optimal state x., and X are solved by the following equations :

1.
( N
oH oH
_ 2 to<t<tr— NT
ox Zaxid Y !
Z:‘1 t=t+iT
— OH < 0H
M -G | DT <<t T =12 N
- i=1
_a_, tf—T<t<tf
\ T

(2.16)
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2.
( N
oOH OH
_ 2t to <t<ty—NT
ou Zauid . ’ !
Z:.I t=t+iT
— OH < 0H . o
") _%_Zau , =+ )T <t <ty—jT, j=12,--- ,N—1
- i=1 *
_a_, tf—T<t<tf
L u
(2.17)
3.

#(t) = fa(t),a(t = T),..., 2t — NT),u(t),ut —T),...,u(t — NT),#)  (2.18)

where ziq = x(t — iT), uyq = u(t —iT), i = 1,2,--- | N, and \(t) is the Lagrange multiplier
satisfying A(ty) = 0. And the second variation of J on (x.,u.) must be positive, i.e.
62 J(zy,us) > 0 or equivalently, the corresponding Henssian matriz of H must be positive

definite, i.e.

o’H . o’H o2H L o’H
Ox? 0x0T N g Oxdu 0xdung
9’°H . 9’H 0’H . 9’H
aa:]},dax Ba‘v?\,d oz N qOu B:L‘N(‘iauNd >0 (219)
’H . ’H o’H L ’H
Oudzx Oudzx Ny ou? Oudung
o’H . o’H o2H L o’ H
L Ounq0z OunqOrNg OungOu Bu?\,d _

Proof. Following the concept of Lagrange multipliers in constrained optimization problem,
let X(t) be an n-vector function seeking to minimize, with respect to u(-) and x(-), augmented
cost function

ty
%@mj):!/(H—V@ﬁ

to

= /tf(F+ N f = Ag)dt

to
Let 0x, du denote the variations from the optimal trajectory and control, i.e. * — x,+ adx,
u — uy + adu for some constant a.. And the corresponding delay terms in x and u are also

variant, 1.€. Tjg — Tyig+ Q0T;q, Uig — Usig+dU;q, © = 1,2,..., N. Then the first variation
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of J, is computed as follows.

dJo(z,u, ) = di
-/ [
I/

ozt [— + )\] dt +

o(T + adz, u + adu, )\)
T
o+ ou —+Zéld6 Zazda

N ty—iT H
> / sz [ 0 ] dt+
to—iT axid t=t4+iT

to i=1
N ty—iT H

/ 5%[ ]dt+2/ ou” [a } dt + \éz|)
7 Jto—iT OMid | g i1 0

Since x(t) and u(t), fort € [to— NT, 1] are prescribed in (2.13), therefore the corresponding

ty
dt — / A adt

to

variations dx and du on this interval should be zero. The optimal condition is obtained by
letting 8J, (24, us, ) = 0. Thus the optimal x.,u., and X\ must satisfy (2.16),(2.17), and
(2.19), with X\(t;) = 0. The variations du and 6x must also satisfy

0% = f(5$, 5$1d, Ceey 5$Nd, (5U, 5U1d, ceey 5UNd; t)
with initial conditions
dz(t) = 0,0u(t) =0, to — NT <t <ty
The second variation of .J is given by
ty
0% Ja(, u, \) :/t oz" 0xpg Ou' Oug ]
0
- 0°H 0*H 0’H 0*H
0x? 0x0z Ny Ox0u 0x0upNy [ Sz i
O’H 0’H O’H 0’H
0 NgOT 8de 0z ngOu 0T NgOuUNg 0T Nd
2 2 2 2 dt
0°H 0°H 0°H 0°H su
Oudzx Oudz N4 ou? Oudupng
OPH ?H OPH ?H | Oung |
| auNdax auNdade auNdau 8“%\%[

In order to have a minimal value for J at (x.,u,), we need

62T (T, Uy, N) = 62T (24, u,) > 0
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i.e. Henssian matriz of H on (x.,u.) must be positive definite, i.e.

0’H
02

0’H
8de8x
0*H
oudx

0’H
8uNd8m

0’H 0’H
0x0T Ng 0xdu
0’H 0’H
ax%d 0z ngOu
0’H 0’H
8u8mNd 8u2
0’H 0’H
8uNd8mNd 8uNd8u

O’H
8x8uNd

O*H

8de8uNd

O’H
8u8uNd

>0

15
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Chapter 3

Stability in Linear Time-Delay

Systems

This chapter is devoted to the study of the delays on the asymptotic behavior of the solution
of linear retarded differential difference equation. A special case of the retarded equation

considered here is

B(t) = Ax(t)+ ) Aja(t—jT)

j=1

z, (1) = o(r), T€[=NT,0]

(3.1)

where x € R*, T'> 0, and A and each A; is an n x n matriz, j =1,2,--- ,N.

It is well known that the asymptotical behavior of the solutions is determined from the

roots of the characteristic function

N
p(s) = det[s] — A — Z AjemiT]
j=1
The zero solution of (3.1) is uniformly asmptotically stable if and only if all roots p(s) lie
in the open left half complex plane (see, for example, [11]). Since p(s) is a transcendental
polynomial containing the term e=*T it is every difficult to apply this criteria to check the
stability. Our primary object is to given condition on the coefficients A, A; in (3.1) which

will ensure the system (3.1) is asymptotically stable.

17
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Unlike the research idea presented in Section 2.2, a stability equivalence between linear
delay and non-delay systems is examined. Once the solution of a certain matriz equation
exists, we can transform a delay system into a non-delay one. The Lyapunov function from
the non-delay system is selected as our Lyapunov functional of the original delay system for
stability analysis. Our results show that delay system is stable if and only if all equivalent
systems without delay are stable. On the other hand, when the existence of solution of
certain matriz equation fail, we can apply the existing results from other research papers,

e.g.[19] for stability analysis.

3.1 Single time-delay case

The linear time-invariant system with single state delay is considered first:

z(t) = Az(t)+ Azt -1T), (3.2)
T(1) = (1), —T<7<0
Define a new state variable
2(t) 2 2,(0) + O(t) x 2y = 2(t) + O(t) * 24 (3.3)

where

t) %z = /@ T)xy (T dT—/ O(—7)x(t + 7)dr (3.4)

By change of variable, ©(t) x x; can be expressed as

Ot) xxy = Ot — )z(r)dr

t—T

and its deriwative with respect to t is given by

d t
Lo xz = Ot - (i T+/ Ot — )a(r)dr

— 00)(t) — 6T / Ot — r)a(r)dr
Then the differentiation of z(t) is computed by

z(t) = x'(t)+%@(t)*xt

¢ (3.5)
— A+ 0(0)]e(t) + [Ar — OT)e(t — T) + /tT Ot — ) (r)dr
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From (3.5), it is noted that different choice of ©(t) may transform the system (3.2) into
different type of system. If possible, we have better to keep the new system delay free.
Firstly, if we choose ©(t) as the solution of

o) = [A+0(0)e(t) (3.6)
o) = A
then (3.5) becomes
) = [A+0)) + /t A+ o) - ra(r)dr
= [A+O(0)][xz(t) + O(t) * ]
= [A+06(0)](?)
with the initial state defined by
zZo = IL’(to) + @(to) * Ty
= o)+ [ er)s(-r)dr
Here we arrive a new system :
i(t) = [A+06(0)]x(1),
(3.7)

“t) = 7= 6(0) + / O(r)b(—r)dr

provided that the solution ©(t) of (3.6) exists. Observe that if the solution of (3.2), x(t) — 0
ast — 00, it follows from (3.3) that z2(t) — 0 ast — oo also; and if z(t) — 0 ast — oo and
D(zy) = 0 is asymptotically stable, then x(t) — 0 as t — oo. Thus, we called the system
(3.7) as the stability equivalence system of the system (3.2). Since equation (3.6) may
possible have more than one solution, it means we could obtain many equivalent systems
like (3.7) corresponding the given system (3.2). Therefore the system (3.2) is stable if and
only if all the equivalent systems with asympototically stable D(x;) = 0 are stable.

On the other hand, if there is no solution ©(t) satisfying (3.6), a good choice for ©(t)

i8
O(t) =0, Ot) =4, (3.8)
Then the rate of change of z(t) from (3.5) becomes

2(t) = (A+ Ap)z(t)
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with initial condition of z(t) as

20 = ¢(0) + /0 Arp(r)dr

=T

Again, an alternative system is obtained :

2(t) = [A4+ Aj]x(
3.9
which solution is given by
t
A1) = 20+ (A+ 4y) / o(r)dr (3.10)

When z(t) — 0 as t — o0, in order to let the improper integral in (3.10) exist, it must hold
z(t) = 0 ast — oco. If x(t) — 0 ast — oo, from (3.8), it follows that z(t) — 0 as t — oo.

From above discussion, the weighted energy of z(t), i.e.,
V(z(t)) = z(t)" Pz(t), P >0

is a good candidate of Lyapunov function of the system (3.2) for stability analysis.

3.2 Multiple time-delay case

By using the same equivalence concept developed in Section 3.1, the equivalence state vari-

able z(t) is defined the same as in equation (3.3), i.e.,

A) = D) 2 2,(0) + O(t) %z

= a(t) + O(t) %z, (311

where O(t) is now defined by

N

O(t) = Z @j(t)X[O,jT] (t)

J=1

withxr be a simple function acting on F, i.e.

1, teF

xr(f) = 0, tdF
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The convolution integral ©(t) x x; is expressed as
N 0
Ot)yxxy = Z/ O;(—=71)x(7)dr
j=1 79T

_ XN; /tth@j(t—T)x(T)dT

And we note that ©(0) is given by
N
0(0) = ) _6;(0) =01(0) + 05(0) + - - + On/(0) (3.12)
j=1
Then the stability equivalence system of (3.11) is given by
2(t) = [A4+06(0)]z(t), t>ty

z(to) = zo=¢(0)+2/0] 0;(r)p(—7)dr (3.13)

provided that there exist solutions ©;(t) for the following matriz differential equation:

0;(1) = (A+0(0))0;(r), with 0;(jT) = A; for 7 € [0,5T)]

(3.14)
O,;(r) = 0, elsewhere
with j =1,2,...,N. The solution ©;(t) of (3.14) is given by
9;(1) = exp [(A + 6(0))7] 6;(0)
and hence ©;(0) must be the solution of the matriz equation:
exp [(A+0(0));T]0,(0) =A4;, j=1,2,...,N (3.15)

In order to prove that the system (3.13) is stability equivalence to the system (3.11), the

following lemma needed.

Lemma 3.1 [2] Suppose A is stable. Then there exist a positive definite, Hermitian matriz

P such that
PA+ATP+R=0 (3.16)

where R is any positive definite Hermitian matriz.
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Lemma 3.2 Let ©;(7) is the solution of (3.14) and ©(0) is defined by (3.12). Suppose
that A + ©(0) is asymptotically stable and if D(z;) = z(t) + O(t) x z(t) = 0, V t > tg
is asymptotically stable about x = 0. Let V(-) be a scalar function defined by V (t,z;) =
D(z)"PD(zy). Then there exist continuous and nondecreasing function a(s), B(s),v(s) :

Rt — R*

a||Dell) <V (t, 6) < B(ll¢ll+)
V(t,9) < —7(I1D@)])

and a(s) — oo as s — 0o, and y(s) > 0 for s > 0.

Proof. Since A+ ©(0) is stable, then for any R > 0, by Lemma 3.2, there ezists P > 0
such that
P(A+06(0) +(A+0(0)"P+R=0

The total derivative of Lyapunov functional V (t, ;) is given by

V(t,z;) = D(z,)" (P(A+6(0))+ (A+6(0)"P) D(x,)
— —D(2)"RD(z;) <0

Since P and R are positive definite, then

V(t,z,) = D(z,)"P2P:D(z,) = ||P2D(x;)]|?
V(t,e,) = —D(x,)"R>R>D(x,) = —||R>D(x,)|)?

We obtain
Amin (P)ID (1) |I” < V (£, 20) < Apae(P)[| D ()]|?

Since

D)l = [le(t) + O() * ]

= +Z/ i(t — m)x(r)dr
< x(t)||+z||/t-T@j(t_T)x(T)dT

By Mean value property of integrals, we obtain

[D(z)]| < <I+ > ||/ it =7 dTII) 2l (3.17)




3.2. MULTIPLE TIME-DELAY CASE 23
i.e.,

Anin(P) [ D(@) I < V(t, ) < Anaa( P D(D)* < Ao (P) <T+ Z I o 0;(t - T)dT||> [l

and
V(t,8) < =Amin(R)[D(9) ||

Choose

a(s) = Ann(P)s?

N ¢ 2
_ (4 2

B(s) = Amax(P) <1+ ; [ /HT 0;(t T)d7||> s

7(s) = Amin(R)s?
Then a(s) — oo as s — oo and y(s) > 0 for s > 0. |

Theorem 3.1 Suppose that there is a smooth nonsingular solution ©;(t) of (3.14) and
the TD system be described by (3.1) is stable if and only if the equivalent linear dynamical
system (3.13) is asymptotically stable and D(x;) = z(t) + O(t) xx, = 0, V t > ty is
asymptotically stable.

Proof. (Sufficiency) Before proving , we must show that the operator D is stable. Firstly,
we want to show that the operator is linear. Since O(t) x x; is linear, the operator D
satisfies the property. Secondly, we want to show that the operator D is continuous. By the
equation (3.17), we obtain the operator D is bounded. And by Theorem 2.1, we obtain D is
continuous. Thirdly, D is atomic at zero. And since D(x;) =0, V t > tq is asymptotically
stable, by Definition 2.9, D is stable. Now, suppose that there is a smooth solution ©,(t) of
(3.13) such that A+ ©(0) is stable. By Lemma 3.1, 3.2 and Theorem 2.4, we know (3.1)
18 asymptotically stable.
(Necessity) Suppose(3.1) is stable, then associated characteristic equation

N

det (s[ —A— ZAjesz) =0
j=1

has all roots possessing positive real part. By (3.15) we have

0 = det {81 A- XN:eXp [(A+0(0) — sI)jT] ej(o)}

=1

= det {s[ —A=0(0)+6(0) = > exp[(A+O(0) — sT) jT] ej(())}

j=1
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Let L denote sI — (A + O(0)). Ezpanding the exponential term in power series given as

0 = det{L+@(0)—ie‘jLT@j(0)}

j=1
N

= det{L+@(0)—Z (I—jLT+ (J'L'T)2 +.,.+(_1)nw+...> @j(O)}

j=1

= det(L)det{[—f—;(jT@](O)—L(‘;?)Z@j(O)—F +(—1) L ITEfT) 0,(0) + )}
_ det(L)det{IJrZ(I—% (—1) (JLZ!)H 4 );Tej(())}
Al s iLT)"
_ det(L)det{I+jZl(;(—1)"((‘:L+1))'> TGJ(O)}
Since
I-um i< 1V

it following that

jLT -
||Z g ||_Z|| = T,y s

By the Weierstrass M-test, we have

o0 .LT n
Z(—l)” ULT) converges uniformly

!
— (n+1)
]LT )" . . ,
Since Z ; converges to an entire function. Then the eigenvalues \; (A + ©(0))
N
are contained in the spectrum of the matriz A + ZAje’s]T. Therefore
7j=1

A (A+6(0) <0, Vi

Observe the necessary part of the proof in the Theorem 3.1, we know the eigenvalues

N
Ai (A+6(0)) are contained in the spectrum of the matriz A + Z Aje 5T,
=1
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Corollary 3.1 Assume O(t) exists. If the real part of \; (A + ©(0)) is positive, then the
TD system be described by (3.1) is unstable.

On the other hand, if there exists no real solution ©;(t) for (3.1), we select O;(t) =
A, j=1,2,...,N, and the new variable z(t) is defined to be

z(t) = z(t) + ZAj/-T xy(T)dT

with it derivative given by
N
(t) = (A +) Aj> z(t)
j=1
A sufficient condition for the stability of for this type of delay systems is given below.

Theorem 3.2 [20] Assume that for some symmetric matrices R; > 0 and R > 0 there

exists a solution, P > 0, of the equation

N N
ATP+ PA+ ATP(Y  ARTALKT)PA=—(R+ > RpkT)
k=1 k=1
N
where A = A + ZA]-
7=1
Then the system (3.1) is asymptotically stable if the system
N 0
x(t) + ZAj/ x(T)dT =0 (3.18)
j=1 —iT

15 asymptotically stable.

A sufficient condition for ensure the stability of (3.18) is given below :

N
Lemma 3.3 [20] Ifz |A;|l7T < 1, then (3.18) is asymptotically stable.

j=1

3.3 Illustrative examples

Example 3.1
Consider the delay system given by

() = —3a(t) + 0.1350(t — T), &(—7) =1
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For this example A; = 0.135, and using equation (3.16)

0.135 = O.(T) = exp((—3 + 0,(0)T))O,(0)

@1(0) = 01356Xp((—3+®1(0)T))
T — 0135
3—0:(0)

Since T > 0, and ©,(0) > 0, we obtain

0.135 < ©,(0) < 3

For this range of ©1(0), it can verified that x(t) + O(t) x x; = 0 is asymptotically stable at
x = 0. Thus, this system is asymptotically stable for all T.

Example 3.2 Consider the following dynamical system

o | [ 1] [xl(t)]+Al[x1(t—1)]

[x’z(t)J_L 0 —1J Lxg(t)J [xQ(t—l)J
First, we consider the term Ay is zero matriz. We obtain
et tet
z(t) = T
0 et
lim (0] = 0
o , , 0.2 1.5
Then, it is asymptotically stable in the large. If the term A; = , and by the
-1 0.2
equation (3.16)
0.2 1.5 -1 1
= exp + @1(0) @1(0)
-1 0.2 0 -1

We can solve by the Newton’s method

’V 1.2370 0.4161-|

©1(0) { —0.6132 0.8901 J

Thus one of the equivalent system is given by

[z | | o2sr0 rater || aw ]
[ (1) J - { ~0.6132 —0.1099 J [ 2(1) J
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with
A(A+064(0)) ={0.06355 + 0.9157:}

By Theorem 3.1, the system is unstable.

Example 3.3 Consider a system

D) | _| -1 =3 | | ml) || 166 0607 | | it 1)
Fo(t) 2> =5 | | m() 0.93 —0.330 | | xa(t — 1)
with
1
A  Tel-1,0]
xo(T) 0.5

the corresponding ©1(0) is the solution of
0,(0) = e_[A+®1(O)]A1
With the aid of the Newton’s method

1.99936 0.00350
0.00248 1.00466

@1(0) ~

Thus one of the equivalent system is given by

(1) 0.99936 —2.99650 | | 2 (t) 21 (0) 2.762

2o(t) 2.00248 —3.99534 | | z(t) 2(0) 1.3161
with
A(A+06:(0)) ={-1.01188,—1.98496}

By Theorem 3.1, the system is asymptotically stable.
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Chapter 4

Hankel Operators

Consider stable dynamical system with multiple input delays as given by :

(t) = Ax(t) + Bou(t) + ZBju(t —j7T), x(—o0) =0 (4.1a)
y(t) = Cz(t) + ZDju(t —4T), t € (—o0,00) (4.1b)

where the input signal w € L%, and A, By, C, Bj, and D; are constant matrices, for
j=12,---,N. Since the matriz Dy does not affect the value of Hankel norm, we let
Doy = 0 here. Within this chapter, we will discuss the properties of Hankel operators and

its adjoint operators.

4.1 Hankel operator

Taking the Laplace transformation with x(0) = 0 on both sides of system (4.1), we obtain

N
i(s) = (sI—A)NBo+ > Bie)is)
G(s) : N =
jg(s) = Ci(s)+ Y Djemas)
j=1
Therefore the transfer function is given by

N N
G(s)=C(sI — A) ' (By+ > Bje ")+ Dje " (4.2)
j=1 j=1

29
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The associated impulse response function h(t) of system (4.1) can be expressed as
N
h(t)y=>_ Ce*"INBH(t — jT) + ZDét—]T (4.3)
=0

where H(t) and §(t) denote the Heviside function and Dirac delta function, respectively.
Before constructing the Hankel operator for system (4.1), we need to verify the boundedness
of system (4.1). Hence we need the next lemma first.

Since the delta function §(t) doesn’t belong to L'(—o0,00), so as h(t); we must clarify

the space for h(t).

Lemma 4.1 Suppose h(t) be the corresponding impulse response function of the system

(4.1) which in given by (4.3). Then h(t) € P1((0,00); L(LZ, L2)).

Proof. Since

_ oy @]
||h’||£(52_,£3_) - useuﬁg_ ||’LL||
By using (4.3), it follows that
N N
Ihtyull = > Ce B H(t — jT)u+ Y D;d(t — jT)ul

J=0 J=1

N N

< D oNCeIDBH (it — GT)|||ull + Y 1D;8(t = 5T)||||ul
Jj=0 j=1

Then

o0

T / I (t)|dt

0 N N
< [ (n > CeAt B (e~ 7)) + 1|3 Dyt - mn) di
0 =0 j=1
N ) . N o0
< OIS [l - e+ S [ IDyla - T
j=0"70 j=1"70
<

N o N
Ny ||Bj||/ e de+ > ||D;
j=0 - i=1

Since A is stable, by using Definition 2.1, there exist M, o > 0 such that

le|| < Me=
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Therefore
N %0 N
R llp0ooeez 22y < IICHD ||Bj||M/ e Ndt +y || D
j=0 iT j=1
u N N
= DB+ I < o0
7=0 7j=1
This concludes our proof. [ |

Lemma 4.2 Suppose the system (4.1) is stable and there are constants M and o > 0 such
that ||e?|| < Me=. Then the Hankel operator I' of the system (4.1) is bounded, i.e.

N 00 N
T < eI B [ et a3 1|
=0 T =1
u N
= ||C||EZ 1B+ 1Ds]] < o0
5=0 j=1
Proof. From Lemma 4.1, the proof is complete. [ |

Corollary 4.1 Suppose the system (4.1) is stable. Then the output function y(-) belong

to L2 whenever the input function u(-) is in L.
The Hankel operator for system (4.1) is defined as

r : £?2— Ei
u(-) = y() =Tu()

Figure 4.1: The relation between input and output

Substituting of (4.3) into (2.4) and after some algebraic manipulations, this operator is
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constructed explicitly in the form of

(TCu)(t) = /0 Ce ) Byu(t)dr+

(N emin{jT,t} N
Z/ Ce " M Bju(r — jT)dr + Y _ Dju(t—jT), (i—1)T <t <iT,
j=177% i=i

< i=1,2,..,N (4.4)
N 3T
> / Ce A" Byu(r — jT)dr, t>NT

\ j=177

due to the fact that u(t) = 0 for all positive t. The boundedness of T is obtained directly
from Corollary 4.1.

The compactness of ' is will discussed in Theorem 4.1. We need the following lemma,

first.

Lemma 4.8 Suppose D € RP*™ then D # 0 if and only if (D), # 0 for all 1 <k < m.
Proof. (Sufficiency) The matriz D can be expressed as

dll dlm
dyy - dypm

P

then it follows (DT D)y, = dek Suppose (DTD)yy, = 0, for all 1 < k < m. Then
j=1

dij =0, for all1 <i <p, 1 <j <m, which means that D = 0. It is a contradiction. We

have (D"D)gy # 0 for all 1 < k < m.
(Necessity) The necessity is obviously true. [ |
When there exist No D; terms, or equivalently D; =0, j =1,2,--+ N, form Theorem
8.2.4 of Curtain and Zwart [5], T is a compact operator. Here we want to examine the
compactness of I with nonzero D; terms.
Instead of analyzing the case with constant matrices D;, j = 1,2,--- N, the com-
pactness of Hankel operator is discussed here with a time-varying matrices D;(t), j =

1,2,---,N.

Theorem 4.1 The Hankel operator defined in (4.4) is compact if and only if for each j,
1 <j <N, Dj(t) =0 for almost everywhere t € [0, jT).
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Proof. (Necessity) Assume there exist a j and a set E C [0,7T] such that Dj # 0, for
all t € E with the properties:

1. The measure of E, u(E), is positive,
2. If EN(a,b) # 0, then uw(E N (a,b)) > 0, for any open interval (a,b).

Fized k with 1 < k <m, let

V = {t—jT|te B} C [-jT,0]
X[b—jT—@,b—jT}mv(t)

L i=k
(@it) = 3 \Ju(B— T~ 2 b~ jT)N V)
0,

1<i#k<m

for each n € N, where (u"); denote the i-th component of a vector u"™ and x is a simple

function acting on a set F'. Then it follows

0 0 b—iT Xy i B 4y ()
/ un(t)Tun(t)dt:/ [(u”)k(t)]2 dt:/ [b—jT—52 b—5TINV di =1,
o o =2\l — 5T = 25 =TI V)

Hence{u"(t)} is a bounded sequence in L£>. Now for anyn, { € N and { < n < oo,
1D;(tyu"(t = §T) = Di(t)u(t = 5T)IZ2
= /0 [w"(t = §T) — u*(t — 5T)" D] (1) D; () [u" (t — 5T) — u’(t — jT))dt

= /_ (D (t + 5T)D;(t + 5T))ke [(u™)i(t) — (W)e(t)]*dt (4.5)

3T

Since

X[b—jT—#,b—jT}mv(t) X[b—j:r’—#,b—j:r’—@]mv(t) + X[b—jT—@,b—jT}mv(t)
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it follows that

(u™)k(t) = () (t)

X[b—jT—@,b—jT}mv(t) B X[b—jT—@,b—jT]mv(t)
Vil =T =22 b —§T1AV)  \Ju(b— T — 42 b — TN V)
Xlp—jr—E) i “(E)}nv(t)
= - . 5) . + X[bijf@,bij]ﬁV(t)
\/M([b—JT— b —jTInv)
1 1
Vil — 5T =25 — §T1av) (b — T — "B — 7] V)

(4.6)
The substitution of (4.6) into (4.5) leads to
1D;(tyu™(t = §T) = D (t)u(t — T 72
2
b—jT—1E) X u(E) e (t)
B / (DIt + jT)D;(t + §T)) i Lo sl Lo w114 dt
b7 S\ B )
b—jT -
+/b e (Dj (t+JT)D;(t + 5T))kk X[bijf@,b—jT]mV(t)
2
1 _ 1 it
Vil =T =B — 5110 v)  \Ju(b - T — B — 1] V)
2
i \/u uE) T AV
> / (D]t + jT)D;(t + jT))x
bjr -1 \/u uE) b TNV
2
X[bijf@,bij]mV(t) \/M —) 0—3TINYV)
W([b—ﬂ—@,b—mmw W w1 )
in which

b—jT
’ :/ (E) (DJ'T(t+jT)Dj(t+jT))k,kdt #0
b—jT— ==

Let {u"i(t)} be a subsequence of {u"(t)}. There exists N € N, ny, ng > N, ny > ny, and

ng — 0o as k — oo, we obtain

2
\/u (Ib— T — M b — 5T V)
\/u B ST) V)

ID;(t)u™ (t = 5T) — Di(t)u™(t — jT)llz3 > s
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or equivalently,

Jm (| D;(#)u" (t = jT) = Di(tu™ (t = jT)llz2 > s
—00

When k s ranged from 1 to N, the above relation holds for all k. By the definition of
Cauchy sequence, the sequence {D;(t)u™(t — jT)} does not contain a Cauchy subsequence
m Ei. This means that it does not contain a convergent subsequence in Ei. Therefore, T’
is not compact if there exist a j and a set E C [0, 5T such that D;(t) # 0 for allt € E.
(Sufficiency) Suppose D;(t) = 0 for almost everywhere t € [0, jT] with j = 1,2,---, N,
and let {u™(t)} be a bounded sequence in L, then

/0 [w" (t = §T) — u™(t = 5T)]"D;(t) "Dy (1) [u" (t — jT) — u™(t — jT)]dt
0
= [ W0 - w0 D+ T TDy e+ T ) — w0t = 0
—iT
for all n < 0o and n,m € N. Hence the sequence {D;(t)u™(t — jT)} is a Cauchy sequence

in L% and then it is convergent in L2.. Therefore, T' is compact. [ |

4.2 Adjoint Hankel operator

It is noted that (T'u)(t) as given in (4.4) is the sum of three types of operators, I'y, I';, and
Ly, 7=1,2,..,N, to be defined, respectively, as

(TCou)(t) = /0 Ce ) Byu(r)dr

min{¢,jT}
(Tju)(t) = / Ce """ Biu(r — §T)dr

—0o0

min{0,t—;57T} 5
— / Ce =) Biu(t)dr

Dju(t—jT), 0<t<jT

(Fayu)(t) = 0 ¢ > T

where Bj = ¢ YTB;. The derivation of the adjoint of T is easier if one computes the
adjoints for Uy, I'j, and U'y;, separately. Since the adjoint operator I'; can be determined

according to

(v, Tjubes = (Tv,u)ge
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Then,

(0,Tju)ez = (T
min{t,jT}

Ce'TY Biu(t — jT)dtdr
00 71?1?11{0 t—jT} ]
/ v (1 / CeAT=t=91) By (t)dtdr
0

0 oo
( vT(T)CeA t)Bde> u(t)dt
X{0t+]T}

I
o\
8
-t
3
2

T
( BTAT DeTylr)dr ) u(t)dt
—00 max{0,t+5T'}

We obtain
(T5v)(1) :/ B]-TGAT(T’”C’TU(T)CIT

max{0,t+57}

Similarly, the adjoints of Ty and U'q, are found to be

(Tio)(t) = /0“’33 "0 CTy(r)dr

Dlv(t+jT), —jT<t<0
0, t < —iT

(Fgv)(t) =

Thus the summation of the above three adjoints gives us the adjoint operator I'* as
™ . £%(0,00;RP) — L*(—00,0;R™) = v(+) = (T'™v)(")
where

(T)(1) = / BIeATC-DCTy(r)dr+
0

N oo N
B]-TeAT(T’t)C’TU(T)dT + Z Dv(t + jT),
j=1 j=i

3 —iT<t<—(i—1)T, i=1,2,..,.N (47)

N
Z/ BleA" 00T y(r)dr, t<-NT
7=1

max{0,t+;57}

\
Corollary 4.2 T* is not compact operator if and only if for each j, 1 < j < N, D;(t) =0
for almost everywhere t € [—jT,0].

Proof. The proof of corollary 4.2 is similar to Theorem 4.1’s. [ |
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4.3 Essential spectrum

Lemma 4.4 The Hankel operator I' is a Fredholm operator.

Proof. This follows directly from the definition of Fredholm operator. [ |

Definition 4.1 The essential spectrum of T', pegs(T), is defined to be
Pess(T)={A|X € C such that \I — T is not a Fredholm operator}
with the spectrum radius defined by

Oess (P) = Sup{|)‘||)‘ € pess(r)}
By this definition, it follows that the spectrum radius o.s(I") which is equal to
Oess(I') = inf{||T’ — K||| K is compact}

From Theorem 4.1 when the constant matriz D; # 0, the Hankel operator I' for the
system (4.1) is noncompact. Pandolfi[27] computes the essential spectrum of T*T' for the
condition T = 1. The extension of Pandolfi’s result to general T is given by the following

lemma:

Lemma 4.5 The essential spectrum T'*T" is a finite set with its elements are identified by

the algebraic equation
D, --- Dy
det(\ -D™D) =0, D=| : :

Dy -+ 0

where I stands for identity matriz with appropriate dimension.

Proof. We can partition the operator I' into two parts:

r=T.ely (4.8)
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where T', 1s compact but Iy is noncompact. Here I'y and its adjoint are given by

Diu(t = T) + Dyu(t —2T) +---+ Dyu(t — NT), 0<t<T

Dou(t = 2T) + Dsu(t — 31') + - -+ Dyu(t — NT), T <t<2T
Cau(t) = | zul ) sul ) ' v ) (4.9a)

Dyu(t— NT), (N—-1T<t<NT

DTv(t+T)+ DIv(t+2T)+ -+ Dhv(t+ NT), —-T<t<0
DIv(t+2T) + Div(t+3T)+- -+ Dyv(t+ NT), —-2T<t<-T
Pouty = | DEV(E+2T) + DYelt+3T) + -+ Diu(t + NT) Dby
\ DXv(t+NT), —NT<t<—(N-1)T

Follows the results from Zames and Mitter [32] that “Uf X, Y are any pair of operators
in a Hilbert space, then X ~ Y means that X — Y is compact. The symbol ~ denotes
equivalence modulo the compact operators (i.e., in a Calkin Algebra ). It follows from the

definition of essential spectrum that if X ~ Y, then X, Y have identical essential spectra.”.

By (4.8),

T =T.0ol)T.0T) =TT, e T,®el, ®Tily

and using property that the composition of a compact operator is also compact and so is its
adjoint. Thus, the noncompactness of I'"T" is due to the term I';I'y. That is, the essential
spectrum of I'*I" coincides with the spectrum of the noncompact part I';[';.

By viewing (4.9), we decompose the signal u(t) in the following way :

w;(t) =u(t—j7), j=1,2,--- N

and then the T'qu(-) can be rewritten in terms of u;(t), i.e.

| 1 T 1| wm(@)
Cqu(t)xp0,m(1) Dy Dy --- Dy, Dy "
U2
FdU(t)X[T,QT} (t) B Dy Dy --- Dy 0 .
UN-1 (t)
i qu(t)X[(Nq)T,NT](t) | Dy 0 .- 0 0 |
| un(t)
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Thus, the essential spectrum I}y is a finite set with its elements are identified by the

algebraic equation

Dy --- Dy
det(\I - D™D) =0, D=| : : (4.10)
Dy -+ 0

where I stands for identity matriz with appropriate dimension. Hence we prove Lemma 4.5.

Example 4.1 Let G(s) = =5 + e *°, and the state-space realization of G/(s) is given by

o(t) = —z(t) + u(t)
y(t) = x(t) +u(t—1)

Since D =1, by Lemma 4.5, then the essential spectrum of Hankel operator is 1.

Example 4.2 Given the system

o(t) = —z(t) +u(t)+ult—1)+u(t —2)
y(t) = z(t)+ult—1)+u(t—2)
Since D; =1, Dy =1, by Lemma 4.5,

11
det | A\ — =0
10 10
Then the essential spectrum of Hankel operator is 2.618.

Once the essential spectrum of I' is computed, the Hankel norm or the maximal singular

value must be greater than y/oess(I*T).

4.4 Input/Output maps

In this section, we want construct input/output map for I.
N

Since y(t) = Cx(t) + Z Dju(t—jT), t > 0, only the input signal u(t) in [-NT, 0] will
7=1
directly affect the output signal y(t). For each signal in [-NT,0] C £?, we can divide it
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into N segments, and each segment is shift in time such that its domain become [—T',0].
These processes are shown in Figure 4.2. After stacking these segments, we arrive a new

space [T, 0]". Thus, any input signal in £2 can be partitioned as follows

i) = ut—-(G-1DT), —T<t<0,1<j<N
us(t) = ult), t<—NT

and let ul(t) = [Un(t), v ,UlN(t)]T. Then

uy ()
U2 (t)

cu

where U = L?[-T, 0]V x L*(—oo0, —NT].

Similarly, the output signal in £% can be rewritten as a signal belongs to Y, i.e.

yi(t) = y(t+4T), ~T<t<0,1<j<N
ya(t) = y(t), NT >t

and let y i (¢) = [y11(t), -+ ,yin(t)]". Then

yi(t)
y2(1)

cy
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\

(a) original signal in [-NT, 0]

U time shift Lhn( 1)

-T 0

-NT S(ND)T

Lk time shift Lho )

u time shift Lho( t)

0 -T 0

-7

(b) new signal in [T, 0]"

Figure 4.2: Stacking the input signal from [—~NT,0] to [T, 0]
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We recognize this U and ) as our new input and output space. Thus we define the

following spaces.

Definition 4.2 Define the “state space” X = R x L2[—T,0]", the signal space of the
past input U = L*(—oo, —NT] x L?[-T,0]", and the signal space of the future output
Y = L2[-T,0]N x L2)[NT, o).

Let zy denote the value of state at t = NT', i.e. xxy = 2(NT).

Definition 4.3 The input map ¥ : i/ — X is defined by

N o _ TN
U9 uq
We can realize ¥ into four parts :
v A Uy Wy
Ugr Wa

i.e.

which implies

(Tpw)(t) = / e TAB(A)uy (7)dr

7TNT
(Wious)(t) = / =7 B(A)uy (r)dr
(Upruy)(t) = wy
(\I’QQUQ)(t) = 0
with

N
B(A) = > *NTp;

§=0
A — [I AT 24T | JA(N=1)T ]

Definition 4.4 The output map ® : X — ) is defined by

e []

o) o]
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We can realize ® into four parts :

(I)ll (1)12
@21 (1)22

i.e.

(Prizn)(t) + (Pr2w)(t) = y1
(Porzn) () + (Poowr) (F) = y2

which implies

(I)H.’L'N)() = C@At./z‘:’L'N

(
0 0 R
(Prouwy)(t) = —/ CeA(Tt)Bul(T)dT—/ C’e’A(T’t)B(A)uI(T)dT+Du1(t)
¢ -7
((1321.’1,']\7)() = CeiA(NT*t)IN
(Poui)(t) = 0
where
~ T
A = e AN-NT o AN-9T (~AN-3T . |
[ B, -.- By
B — ) )
| By -+ 0
- -
Ze—A(j—l)TB] “NTB. 0
=2
B(A) =
G_ATBN
0

and D is defined as before.

Lemma 4.6 The adjoint map V* of the input map V is described as follow:

o | B B(A)T Ae=""tay +uy ()
u (t) B(A)TeiATtIIIN
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Proof. The adjoint operator of ¥ is defined by

uy TN uy TN

< , U >yu=< v , >y
Ug u U2 u;
Since
u x
<V ' , N >x
U9 uq
=< VUyuy + Vioug, xny >py + < Uoruy + Uosus, uy > 2(=T0)N
0
= (\I/Hul)TxN + (\1’12U2)T$N +/ ul(T)Tul(T)dT
-7
0 T —NT T
= / w (7)" (B(A)TATe_A TN+ u1(7)> dr +/ uy(7)'B(A) e Taydr
_T —00
u x
=< ! , U N >u
U9 u;
Therefore,
R T T ry | | BATATe oy +uy (1)
w Ur, W, u B(A)Te A xy
|
Lemma 4.7 The adjoint map ®* of the output map ® is described as follow:
0 00
(1) / XTeATTCTyI (r)dr + / e_AT(NT_T)CTyQ(T)dT
o* Y1 _ L -T o/ NT
ya(t) / B(A)Te A" EDC Ty (r)dr — / B(A)Te A" D0y, (r)dr + DTy, (1)
t -7
Proof. The adjoint operator of ® is defined by
x x
< N , P* Y1 >y=<® N , Y1 >y
u; Y oy Y2
Since
x
<P N , Y1 >
u; Y2

=< Oy + Prouy,y1 >z + < o1y + Poolly, Yo >r2(NT00)

0 o0
rh </ ﬂeATTCTyl(T)dT +/ 6_AT(NT_T)CTy2(T)dT>
-7

NT

~

_/0 u, (1) (/t B(A e~ A" =Ty (1) dr + /0 B(A)TG_AT(t_T)CTY1(T)dT+DTy1(t)> @t

T -T -T
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Therefore,
0 00
- /TﬂeATTC’Tyl(T)deL /NT e_AT(NT_T)CTyQ(T)dT
P = T B 0
Y2 / B(A) e =0Ty (7)dT — / B(A) e A" =0Ty (7)dT + DTy (1)
t T

The product of ¥ and @ is given by

0 0
Cel' Axy — / Ce A YBu,(r)dr — / Ce AT B(A)uy (7)dr + Duy(t)
T

Define I as the representation of I in terms of f and Y, i.e. T : £2 — L% is equivalent to
[ :U — Y. After some algebraic operator, we arrive at I = ®W, hence [ = U d*.
The controllable and observable gramians are P = WU¥* and Q = ®*®, respectively, i.e.

P W
P TN _ (\II\II*) TN _ 1 TN
u; (t) u; (t) Wik I u; (t)
where
0 T
P = / e ATB(A)B(A) e AT dr
W1U1 = / ./46 AtB 111( )d
Wizy = T ATtAT
and
Q N _ ((I)*(I)) N _ I 0 C?\ W2 I 0
uy () u () 0 V-V; A T 0 V-V
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where
Q = /00 A TCTCeMN dr
Whw = /00 ATeATCTCew(r)dr
Vu(t) = /_T B(A) e~ =T Cew(r)dr
¢
Vi (r) = /0 " MB( Ay (1)t
Vou, = / OT e MB(A)u, (t)dt
Viw = /(; B(A)Te AT CeMw(r)dr
Vi, = /0 AT TCTDuy (1) dt
Viey = D;TCeAthJZ

The controllable and observable gramians can be used to compute the singular value of I.

Let o be the singular value of I and (u,v) be the Schimdt pair of f‘, then we have

PPy = o
UQUu = oc?u



Chapter 5

Hankel Norm Computation

In this chapter, we will compute Hankel norm of the following stable system :

i(t) = Ax(t)JrBOu(t)JrZBju(t—jT), z(—00) = 0 (5.1a)
y(t) = Cz(t) —|—ZDju(t—jT), t e (—00, ) (5.1b)

The Hankel operator for system (5.1) and its adjoint have been discussed in chapter 4. The

Hankel norm of system (5.1) is defined as the operator norm of T, i.e.

Definition 5.1 The Hankel norm of the linear system (5.1) is defined as

Y| 2 Yl 2
Gl =iol 2 sup e o e

= p
wEL2 A0 ||U||53 zoER" u€lp ||u||£2,

0 N
To = / e AT ZBju(T —jT)dr, xy € ]R"}.

J=0

where y = T'u, Uy = {uEEZ,uséO

The norm of I can be related to the singular value of I" which is defined by :

Definition 5.2 Hankel singular vector (u,v) and value o of the operator " are defined as

the nonzero solutions of the following equations
T'u = ow, v =ou (5.2)
For any inner product spaces U; and U,, we have the following theorem :

47
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Theorem 5.1 [18] Let Uy, U, be inner product spaces, and let T : Uy — Us be a linear

transformation. Let oy > o9 > -++ > 0, > 0 be its singular values. Then

~  mi 7]
O = min  max
codim M=k—1zeM ||z||

Since £2, L3 are inner product spaces, by Theorem 5.1, the following result is obvious

true.

Corollary 5.1 £2%, ﬁﬁ_ are inner product spaces, I' : L2 — ﬁﬁ_ s a linear transformation.

Let oy > 09 > --- > 0, > 0 be its singular values. Then

o1 = sup
ucL? ||’LL||

From corollary (5.1), we know that its norm will be equal to the largest singular value.
Therefore, we present two different ways to compute the Hankel norm of the system : one

is via variational principle, the other is via Hankel singular value computation.

5.1 Variational principle

Fixed xy, since the Hankel operator T" of the system (5.1) is bounded, there exists vy such
that

1yll 22
< ivalent] (W¥Iluliz: = llyli2) > 0
SUP Tl S Or cauivalently, - max (y lullzz =1yl ) =

which is transformed into the optimization problem: Given the cost function defined by

S & % [ uoatnn -5 [ vy
_ 7; / mu(t)Tu(t)dt—% /N O;x(t)TC’TC’:E(t)dt
1N—1 (i+1)T N . T N
52 /iT <Cx(t)+j:zi;1Dju(t—jT)) (C’x(t)Jrk;leu(t—kT)) dt

(5.3)

we want to find u such that J(u,z;v) is minimized subjected to the constraint (5.1a) and

choose the smallest possible v such that the optimal cost equals to 0. Using the method of
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Lagrange multiplier, the augmented cost function is obtained as

o0

Jo(zyu, Ayy) = /0 {gu(t)Tu(t) + A" <A:1:(t) + Bou(t) + ZBju(t —J7T) — x(t)) } dt

+z_:/z(i+l)T _% (C:r(t) + > Dju(t—jT)> (Cx(t) + 3 Dyu(t — kT)

+A()T <Ax(t) + ) Bju(t—jT) - a'c(t)) } dt

+ [Tt + 20T (et - )

NT

By Theorem 2.5 the optimal state x, control input u, and costate A, which minimize

Jo(x,u, A;7y), must be the solutions of the following equations : for i =0,1,--- N — 1,

( N
Yult) + Y BIAE+ 5T, —00 <t < —NT
=0
! N N N
0 = { ult)— > DI > Dul(t+(j—k)T)+> BIAEt+jT) (5.4a)
j=i+1 k=j—i J=0

N
— Y DjCx(t+4T), —(i+1)T <t<—iT
L j=i+1

N
Ax(t) + ZBju(t —jT), —oco<t<0

=0
: N
) = 5.4b
(1) < Ax(t) + Z Bju(t —jT), T <t< (i+1)T (5.4b)
j=it1
| Ax(1), NT <t < oo
( —ATA(1), —00 <t <0
N
At) = { —ATA({t) + CTCx(t) + Z CTDyu(t — kT), iT <t < (i+1)T (5.4c)
k=i+1
—ATA(t) + CTCx(t), NT <t< oo

with the boundary condition A(co) = 0 and free A\(—oo). Define a new variable z(t) =

)
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—A(t)/7, then the equation for the variable z is

( N
Y2u(t) — ZB]-TZ(t +4T), —00<t<—NT
=0
& N
0 = ¢ Z D} Z Dyu(t+ (j — k)T) = Y BJ z(t+ jT) (5.4d)
J= z+1 k=j—1 j=0
- Z DfCux(t+jT), —(i+1)T <t<—iT
L j=it1
( —ATz(), —00 <t <0
N
1
dt) =  —ATa(t) - LoTCx(t) - S > C'Dpult — kT), iT <t < (i+1)T(5.4e)
k=it1
\ —AT2(t) = SCTCx(t), NT <t <o
where i = 0,1,..., N—1 and the associated boundary condition z(c0) = 0, and free z(—00).

In addition, we need to prove 62J(z,, u;y) > 0.
Let z., u, denote the optimal state and control which satisfy §.J(x,,u.;y) = 0. By

direct computation, the second variation of J, is

0
62T, (u, r, N;y) = ? Su(t) Su(t)dt — —/ Sx(t)TCTCox(t)dt
z—|—1) . T
- Z/ (C(Sm Z D;éu(t —]T)) (C’(Sx Z Dyou(t — kT)) dt
i=0 VT j=i+1 k=i+1

where 6z and du must satisfy

dz(t) = Adx(t) + XN: B;éu(t — jT), 6z(0) =

=0

Comparing with (5.3), the second variation 62.J, can be expressed in terms of J, i.e.
02 Ja(w, 2, ; 7y) = J(6u, dx; )

thus
62 Jo (s, 4, Ny Y) = J (61, 6,3 )

Since J(u,x;7) > 0, for all x and wu, it follows that

62 T o (U, Tuoy A;Y) = 62T (Us, 43 7) > 0
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5.1.1 Solution technique

Before computing the solutions of (5.4), we observe that

1. The time domain (—oo,00) can be partitioned into three subsets: (—oo,—NT],

[-NT,NT], and [NT, c0).

2. From (5.4e), once the value of z(t) at ¢t = 0 is known, say z(0) = 2, the solution of

2(t) for t < 0 can be determined.

3. The variables u and z for ¢ < 0 will be obtained once we know the value z(0) = z

and the restriction of the function u(-) to [-NT,0].

Thus, we only need to compute the functions z(-) and z(-) in [0, NT| and [NT, ), and
the function u(-) in [-NT,0]. We assume for the moment that z, and z, are free nonzero
parameters.

First, consider the time interval [NT, 00). The functions z(-) and z(-) must satisfy

z(t) = e NDg(NT)
1

t
z(t) = eAT(NT~1) (z(NT)——/ eAT(T_NT)C’TC’eA(T_NT)dT:E(NT))
Y JNT

In order to satisfy the boundary condition z(co) = 0,
1 [ 1
SNT) = L / ATC-NT) T CAC=NT) g NTY = LOw(NT) (5.5)
7 JNT 8

where @ is the obervability gramian of the system (5.1) without input delays, i.e.,
& T
Q :/ et TCTCeMN dr
0

Next, consider the functions x(-) and z(-) and in the interval [0, NT] and u(+) in [-NT, 0].
By using lifting operation, make the change of variables &;(t) = z(t + (j — 1)T), n;(t) =
2(t+ (j — 1)T), and u;(t) = u(t — jT) where j = 1,2,..,N and &(0) = x, m(0) = z,
En(T) = x(NT), and ny(T) = 2(NT). This process is showed in Figure 5.1.
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UN(t) . . . . UI(t)
NT—(N=1)T -T 0
&i(t) En(t)
A C ‘
0o T (N-1)TNT
m(t) 1w (t)
C .

0 7 small(N—1NT

time shift
un En NN
0 T 0
£(0) = &(7) 12(0) = m(T)

Figure 5.1: Lifting process on signals u, &, n
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In this way, the equations in (5.4) are transformed to the following ones, defined on the

same interval [0, T':

( N N N
0 =y’us(t) — By e~ ="y Z B ;(t) Z DI Y Dyup—ja(t) = Y DI C& (1)
N-1
0 = 7 2us(t) — ,YBOTQ_AT(t—zT)m(O) _ ,yBlTe—AT(t—T)nl(O) + Z B]-T+177j(t)
=1
{ al ] (5.6a)
=2 DE Y Drugjia(t) = Y DI CE (1)
=2
0 =un(t) —~ Z B]'TefAT(tf(ij) 'm(0) = yBym(t) Z Dyuy(t) — DYCE,(t)
=0

E1(t) = A& (1) + Biuy (t) + Bous(t) + - - - + Byuy(t)

60 = A6(0) + Ban(®) + Buus(6) + -+ Bru (1) (5.60)

| En(t) = Aéw (1) + Byua(t)

([ in(t) = —ATnu(t) — LCTCE(t) — LCTDyus () — -+ — LT Dyun(t)
7’]2(t) == —ATT]Q(t) — %C’TCSQ(t) — %C’TDQUJ(t) — = %CTDNUN_l(t) (5 6C)
[ () = —ATny (t) = 20TCEx (1) — 10T Dyus (8
with the following initial conditions
10 = &1(0) = xo, o0 = &(0) =&(T), -+, Envo = En(0) = En—i(T) (5.6d)
Mo = m(0) =z, mao £ 1m2(0) = 21(T), -+, nvo £ nn(0) = ny-1(T)
Introducing vector notation for variables u;, &;, and n; as
u= [ula Ugy -y UN]TJ £: [617 627 T gN]T; 77:[7717 M2, -+, nN]T
the system (5.6) is converted into differential-algebraic equations (DAE) of the form:
t
0 = [P"®C yB'] JUN (v*I —=D™D)u(t) + [0 vBo(t)"] o
n(t) Tho
(5.7a)
clen| | rea o Jlew]| | B |
— = + u(t) (5.7b)
di {n(t)J [—§1®0Tc I®(—A)TJ {n(t)J [—lCT@DJ
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where the matrices B and By(t) are defined as

By(t)

[ B, --- By

B N-—1

6—A(t—T)BO e—A(t—QT)BO 4 6—A(t—T)Bl . Z e—A[t—(N—j)T}Bj
L Jj=

and D is defined in (4.9). Let D, = v*I — DD and solving the function u(-) from (5.7a)

leads to

u(t) =D," [D"®C BT |:

£(t)

5.8
n(t) )

Mo

+D;1 [0 yBy(t)7] F“’ ]

The substitution of u(-) from (5.8) into (5.7b) gives us

where

I®A 0
—I®C"C Ie(-A4)"

1~T
- ®D

B 1 T glO
—%C’T@)D D7 [0 15olt) ] |:7710 ]
SON P
n(t) Mo

I®A+BD;'DT g C vBD;'BT
—(I®C"'C+C"eDD'D"® () —I® A" -CT"®DD,'B"
0 ’YBD,;lBg(t)T
0 —CT@DD,'By(t)"

We note that A, is a Hamitonian matrix. The solution of the system(5.9) is then given by

n /  pAa-) B, (r)dr [ o 1 (5.10)
0

o

(5.9)
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From (5.6d) the relation between [€19 70|, [€(0) n(0)]", and [¢(T) n(T)]" is described

[n(O)J ot [mo 0 00 0 0 [n(T)J
00 0 00 1 0
[0 0 | (0 - 000 -+ 1]
2 Ro[flo]ﬂLRN“(T)] (5.11)

L] [0 ]

Thus, substituting (5.9) into (5.8) leads to

0] - e femon) o] oo

€10 &(T)
£ et ot +R (5.12)
) ( 0 o ! n(T) )
When ¢ = T in (5.12), we obtain
&) | _ o (cory | & | 4opy | €7
n(T) ! 1o n(T)
or equivalently,
&0 (1= Ry) " ey (T) |
n(T) 20

Thus the functions &(-) and n(-) are given by

[ £(t) ] _ At (Oy(t) + Ry (I— e Ry)™! eAvTCy(T)>

€10
o

o ] (5.13)

>
S
—~

~+
~—
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in which the matrices () has the form

t
o(t) :eAWthnL/ eA”(t’T)BV(T)dT
0
T
+e*'Ry (I—eAvTRN)1<eA~TR0+ / GAV(T_T)BV(T)dT> (5.14a)
0

T
(p(T) = ([ _ eAwTRN)—l <6A7TR[] +/ 6A7(TT)B7(7-)d7-> (514b)
0

Therefore, the relationship between [x(NT), z(NT)] and [zg, 2] is

_ _ (5.15)

Finally, consider the time interval [—NT, 0] to find the relation between x4 and zy. From

(5.4e) we get
2(t)=e 4z, t<0. (5.16)

Since the function u(-) can be obtained by substituting the functions &(-) and n(-) from
(5.11) into (5.9) which leads to

u(t) =D, ([P o C vB"] o(t) + [0 vBo(t)"]) (5.17)

20 20

and then the restriction of the functions u(-) on [-=NT, 0] is given by the relation u(t—;jT) =
u;(t) = (u(t));. In this way, for t < —NT the function u(-) is computed from (5.4a)

N N
1 1
u(t) = —¥§ BA(t+jT) = ;§ "Blz(t+jT) = § jBT —AT(HIT) (5.18)
J=0

J=0

Since the solution of the state equation in the system (5.1) has the expression

t N
z(t) = / e AN " Biu(r — jT)dr
e par
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it follows that

Ty = / ATZBUT—]TdT_Z/ ~ATHD By (T)dr
NT N ET+T
= / Z e A Bay(r)dr + Z/ e A7 Z Bju(r)dr
=0

k-1

o7

N T
= eANT/ Z e ATHT Biu(r — NT)dr + Z eAkT/O e AT Z Bju(r — kT)dr
— j—p k=1

J=0
N

N
1 0 . T, T T
— _eANT e AT E e A]TBj E B;I‘e AT e A Tdr €A NTZ0
v —00 j=0 i=0

T N k—1
+ / e AT Z e kT Z Bjug(T)dr
— —PNZO + / —AT Z AKT (ZB ) k 1Zo + (d)(T))k,QZO] dT

1
= \Ifz-fli() + (-PN + \I/z> 20
Y
in which the matrices Py, ¥,, and ¥, are explicitly given by
0
Py — / AT B(AVB(A) AT dr
T N k-1
v, - / A3 TN By (9(r) )
0 k=1 =0
T N-1 k—1
v, - / ST AT ST B (6(r)) adr
0 k=0 §=0
Combining (5.15) and (5.19) through the relationship (5.15), we therefore obtain
10 -1 ][ ey e | [ o0 o \[=]
L0 0 || Gu@n (e | | ~T+0, tPy+w. || 2]
In order to have nonzero solution for [zg, 2], the following relationship must hold:
L —1I ] (T AT 0 0
w ([0 —1 [ ety ety |, | .
0 0 (@nm(T))N ((Pnz(T))N —I+ \Ij:v ;PN + \Ijz

5.1.2 Main results

We can recapitulate

(5.19)

(5.20)
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Theorem 5.2 Let y be the Hankel operator norm of the system (5.3) which is larger than
Pess- But then ~y is the largest nonzero solution of the equation (5.20).

In the mean while, although the size of the matrix in equation (5.20) is 2n x 2n which
depends only on the size of the state space, the computation complexity of Py, ¥,, and
V¥, increases as the number of delays increases. And when N > 1 it is very difficult to
express the equation (5.20) into an algebraic equation of 7. Thus numerical method should
be adopted to find the solution. So we develop a MATLAB program as given in Appendix
to compute the Hankel norm of stable LTI systems using this Theorem 5.2.

5.2 Hankel singular vectors and values

Substituting the opoerators I' and I'™* from (4.3) and (4.4) into equation (5.2) leads to

(T*v)(t) = (ou)(t) = /000 BY e 00Ty () dr+

(N o N
/ BjTeAT(T_t)C’Tv(T)dT + Z D]-Tv(t +47T),
j=1 max{0,t+57T'} j=i
T <t<—(i— 1T, i=1,2,.,N (521)
N oo
> / BleV00Ty(r)dr, t< -NT
( =170
0
(Tw)(t) = (ov)(t) = / Ce=7) Byu(r)dr+
(N min{j7T,t} N
> / Ce' "= Byu(r — jT)dr + Y Dju(t — jT),
j=177%° j=i

(i—1)T<t<il, i=1,2,.,N (522)

N T
> / Cer" D Bu(r — jT)dr, t> NT

\ j=1""
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5.2.1 Solution technique

In order to solve the variable o and corresponding vectors (u, v) from equations (5.21) and

(5.22), we need to consider the functions &;(t), 7;(t) defined on the interval [0, T'] first.

0 t N
&(t) = / ") Byu(r)dr + / 6A(t_T)ZBjU(T—jT)dT

—0o0

0
&) = / ACHE=DT=7) By (7)dT + Z/ AT Boy(r — §T)dr

—00

[ IS Butr - (- )D)dr, =238 (5.23)

ni(t) = / eAT(T’t’(i’l)T)C’TU(T)dT
t
= / e CDCTy(r + (i — )T)dr, i=1,2,.,N
t

In terms of &;(¢) and n;(t), : = 1,2,..., N, equations (5.21) and (5.22) can be rewritten as

N
C&(t—(i—1)T)+ Y _ Dju(t—jT), (i-1)T <t<iT, i=1,2,.,N

ou(t) = j=i
CeAt=NDg (T), t>NT
(5.24)
( N
> [Bni(t+T)+ Dfv(t+T)], —T <t<0
=1
Z—l N
T (0) + Bini(t+T)+ Djv(t+jT)],
ou(t) = Bge_ATtm(O) + < ; ]z:; [ 7 ! ]
—iT<t<—(i—1T, i=2,3,..,N
N
ZB]Te_ATtm(O), t< —-NT
( /=1

(5.25)
It is easily seen that any solutions {x(7") and 7;(0) in equations (5.24) and (5.25) can be
obtained if the restrictions of the functions &(-) and n;(-), ¢ = 1,2,..., N, in the interval
[0, NT] are identified. It is convenient to make the change of variables by letting

u;(t) = u(t — j7T)
vi(t) =v(t+ (j — 1T)

defined on the interval [0,T] where j = 1,2, .., N. The process is showed in Figure 5.2.
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un (1) uy (1)
_NT—(N-1)T-T 0 t
&i(t) En(t)
* . .
r 0 T (N—1UTNT ¢ r
nn(t m (1)
"
_NT—(N-1)T-T 0 t
Ul(t) UN(t

0 T (N—1)TNT t

time shift

UN En UN nn
— — -
0 T 0 T 0 T 0 T

: 52(0) =& (T) 772(0) ="M (T)
(31 1 (1 T
\ \ \ “—'_' ‘Q—‘_'

0 T 0 T 0 T 0 T

Figure 5.2: Time interval’s partition and shifting for signal u, v, &, and n
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Now the system (5.24) and (5.25) to be studied in the interval [0, NT] is changed to a

new system defined only in the interval [0, T] given by

O'Ul ng +ZD Uj— ]-I—l
(5.26)

ou;(t ZBT —AT- =T 7710+Z (Bl nj—is1(t) + D] vj_ia (1))

] =1

with 4 = 1,2,.., N. And the variables (&(¢),n;(¢)) in equation (5.23) can be expressed in

terms of the variables u;(t) and v;(¢) to the form of differential equations:

E(t) = A& (1) + Biuy(t) + Bous(t) + - - - + Byun(t)
&) = A&(t) + Bouy(t) + Byus(t) + -+ + Byuy-1(t)

En(t) = Aén(t) + Byui(t)

X (5.27a)
m) = —ATmp(t) — CTu(t)
n(t) = —ATna(t) — CTua(t)
[ iv(t) = —ATgn(t) — CTon(?)

with the following initial conditions

102 61(0 Z/ A Byu(r — JT)dr, € 2 6(0) = E(T)- -, Exo 2 Ex(0) = Exr(T)

mo = m(0) = / €ATTCTCU(T)CZT, o = 12(0) = m(T), -+, nvo = nn(0) = nyv—1(T)
0
(5.27b)

For simplicity, we introduce vector notation for variables u;, v;, &, and 7; as following

T T

&= [ §1,82, &N ]Ta’?: [ 72, 777Ni|

T
u= ula”?a"'auN] ,V:[Ul,’vg,"',UN}

and use the vectors &, and 1, denote the corresponding initial values of & and n at ¢t =0,

then the systems (5.26) and (5.27) form a system of differential-algebraic equations (DAE)
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with the following vector representation :

afew]| _ Jrea o Jlen| [ o B|[v0]
Winw | | 0 IeEAT || a0 | | 1007 0| | |
(5.28a)
. [ ToC 0 {g(¢)]+ oI D v(t)]
| 0 B n(t) DT —0oI u(t)

+ {0 ! ] [50 ] (5.28b)
0 By(t) Mo

By - 0

Firstly, we solve u and v from (5.28b)

[v(t)]ngl[mc o | [ew| D_Jg 0

ORI B R ECH

where the matrix D, are given by

0 D

D, =0l —
DT 0

here I denotes an 2N x 2N identity matrix. The substitution of (5.29) into (5.28a) leads

to
dalen| (|14 o o B . [1ec 0
dt | @ty | 0 I®(-A)T I (=) o | ° 0 BT
+ 0 B D;l O AO 50
I®(=0)" o 0 Bol(t) M |

[>
o
| D |
A
—~
~
N—
_I_
Sy
Q
—~
~
~—
1
e
o
IS —

(5.30)
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in which the matrices A, and B, have explicit forms as

Lo rea 0o ][0 B [1ec o
N I®(—A)TJ {1@(—0)T OJ [ 0 BTJ
. [ o0 B 00
T Te (=0 0| 7 [0 B

The solution of the system(5.30) is then given by

o] - (e feomon) [

o(o,1) [ & ] (5.31)

Mo

[I>

The restrictions of the functions u;(-) and v;(-) in [0, 7] can be obtained by substituting

&;(t) and n;(t) from (5.31) into (5.29) which leads to

ol
u(t)

(1)
(1)

IeC 0

0o BT

& ] (5.32)
Since by equation (5.27b) we have

>

Pv
Pu Mo

&(T) = &i41(0), 1i(T) = 1i41(0) (5.33)
fori=1,2,..., N — 1, and from equations (5.32) and (5.33) we can obtain

nv(T) = n(NT)

0
— / AT CTU(T)dT
NT

L[ o
= = / e TN OTCAT N e (T dr
NT

o

_ 1! / AT CT N EN (T)dr

g .Jo

= Qe (5:39)
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where
Q= / A TCTCeN dr
0

Similarly, we also have

oo = Ufl(o)

N o
= UZ/ e " Bju(r — jT)dr
j=0/—o0
N —T
= O'Z/ e ATHT) Bou(T)dr
j=0 7 —eo
—-NT N N —iT J
= / ZQ_A(T+jT)BjO'U(T)dT+O'Z/ ZB_A(T+iT)BiU(T)dT
o0 =0 j=0 7/~ (DT j—

N
_ / Z (N-ITB.gu(r — NT)dr
L&

N— J
Z / Z UL By (7)dr (5.35)
=0 =0

and after substituting the w,1(-) in [0, T from (5.32) into equation (5.35) it follows that

1 &o
10 = ;PNUIO + @ (5.36)

Mo

where the matrices Py and ® are given by

0
Py — / AT B(AVB(A) AT dr

o0

v = [ o 80 |etar



5.2. HANKEL SINGULAR VECTORS AND VALUES

Finally, from (5.33), (5.34), and (5.36), we obtain

o

Define a permutation matrix R such that

£1(1)
m(t)
£2(1)

for all ¢.

5.2.2 Main results

We can recapture our results as

€10
Mo
€20
7120

o

TINO

=0

65

(5.37)

Theorem 5.3 The singular values, o, of I' are the nonzero solutions of the following equa-
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0 -1 0 0
0 0o I 0
det R
0 0 0 0 0
(I-®1) —(:Py+ Pnia) -y —Dopn
[ I 0 0 ]
0 0 0
+ : | Rp(o,T) | =0 (5.38)

0 -1Q I
0 0 0

Although the equation (5.20) and (5.38) have the different form, but by the corollary 5.1,

we know that they have the same solutions.

5.3 Numerical examples

Before we compute the Hankel norm for delay systems, we need to identify the upper bound
of Hankel norm. Once the upper bound is obtain, a bisection method can be applied to
compute the value of Hankel norm. For a general Hankel operator, the upper bound of its

norm is given by :

Lemma 5.1 [5] Suppose that h € P1(]0,00); L(U,Y)) where U and Y are separable Hilbert
spaces. The Hankel operator 'y, associated with h is defined by

Cru(t) = /000 h(t + T)u(r)dr
Then Ty, € L(L2([0,00);U), Lo([0,00);Y) with

ITWll < / 11(8) o dt

In our study, the Hankel operator has the form as specified by (4.4) therefore its upper

for v e L([0,00);U).

bound can be computed follows.

Lemma 5.2 The Hankel operator norm T of the system (2.10) is bounded by

N N
M
ITl < —lCll S OIBI+ D IID;]
j=0 j=1
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where M > 0, > 0.
Proof.

oo

Tl < [ 1 e i

/Ooo (HZC’e =i B.H(t — jT) ||+||ZD<5t—jT)||> dt

7j=1

||c||2 / =B (- dt+z / 1D,15(t — 5Tt
< 1Ny B [ I3 1)
=0 —iT j=1

Since A is stable, by using Definition 2.1, there exist M, o > 0 such that

IN

IN

||6At|| S Mefat

Therefore

Tl

IN

||c||2 B [ e dt+Z||D ||
= Yoy y s+ Y I
7=0 j=1

|
The following examples are uses to illustrate the computation results of Hankel norm

based on Theorem 5.2 and 5.3.

b b —sT
Example 5.1 Let G(s) = % + die T where by, b, and d, are constants. The
s

state-space realization of G(s) is given by

©(t) = —x(t) + bou(t) + byu(t — T)

y(t) = x(t) +dwu(t —1T)
Case 1: by = 1,b; =0,d; = 1. Theorem 5.2 will be applied to compute the Hankel norm.
Comparing with the standard representation (5.1) leads to

A:—]_, B():]_, B1:0,C:1, D1:1,T:1

Since A = —1, we choose M = 1, a = 1, and from Lemma 5.2, the upper bound for the
norm of " is

IT]} <2
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By
~1 0 0 0 0 0 0 0
0 -1 0 0 0 0 0
Ay = _ B, = t—1
o2 —1 01 bo 0 a(; -1
0 01 0 0 0 0
et 0 0 0
0 et 0 0 et 0 oget~1 0
Pl = oleize) oy e Cey=| T Tt
2(c2 — 1) o2 —1 0 0 Let2 o
a
(e=' —e)
0 207 D) 0 et
_ 671 1 _0.2_1_872_'_8740.2 _674
® B o2 -1 0 20 o2 —1 0 ] ’
then the Hankel singular value ¢ is determined by
et -1 0 0
1 —e't+e 1
——0 0 e — -1
2 o02-1 o2 —1
det 0 le 0 =0
——— e
20
1 1 02 —e?
1- et 0 —= 0
i 02 —1 2(c2—-1)0 ]
or equivalently,
1 —2 2 —4 4 6 4,-1 2 -1 2 e?
Z(66 0 —e ' —=90" +40° —8o'le ! +40% + 8¢ '0?) ———5 =0

02 (02 —1)°
The possible solutions are 0.0486869, 0.974666, and 1.42598. Since the essential spectrum
is 1. Thus the Hankel norm of this system is 1.42598. Similiar to our study presented in

case 1, the effect of delay times and D; on Hankel norm are considered in the following.

1. Dy is fixed, but 7" variates. The result as shown in Figure 5.3 states that the value of
the Hankel norm ||G||x approaches 1.29 for large delay time.

2. T is fixed, but change the magnitude of D;. The computational results, as depicted

in Figure 5.4, is the value of |G|y is proportional to the magnitude of D; terms.
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2.5

15 T

7

0.5 T

0 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Delay-time T(sec)

Figure 5.3: Variation of ||G||z with different size of delay time T

70+ . . . . . . . . . . i

60— b

40| .

liGll

30 b

201 .

10 b

Figure 5.4: Effect of the magnitude D; on ||G|| 5
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Case 2: by =0, b; =1, d; = 0. Theorem 5.3 will be adopted. Comparing with (5.1) given
as

A:—]_, BOZO, BIZC:]_, D1:0, T:]_, N=1

Similarly, the upper bound for the norm of I" is equal to 1. Let N = 2, adding two
more coefficients B, = 0 and Dy = 0. By (5.20), D, = +* Ry = I, Ry = 0, B = By,
o(T) = e, P =1e?, Q =3, and ¥, = ¥, =0, then

1 _
det 2y L e T 4 00 =0
0 0 -1 L

2y
which can be reduced to give tan(AT) = A(A? — 3)/(1 — 3)\?) where A2 = vy~2 — 1. With the
aid of MATLAB code, the Hankel norms are listed in table:
T [ofor]os| 1] 2] 3
1G]l | 0.5 | 0.542 | 0.656 | 0.737 | 0.826 | 0.876

Furthermore, asymptotical behavior of the Hankel norm for different size of T' is studied.
As shown in Figure 5.5, there exists a limiting value (less than 1) of |G|y for large T

In order to understand the effect of D; terms on the limiting value of ||G||z, we repeat
previous numerical expeniment with different value of d;, i.e. D; =d; = 1.
Case 3: by =0, b; =1, d; = 1. Theorem 5.3 will be adopted. Comparing with (5.1) given
as

A:—]_, BOZO, BIZC:]_, Dlz]_,T:]_,N:]_

Similarly, the upper bound for the norm of I is equal to 1. Whose results is given in Figure
5.6. And it is obviously that there still exists an limiting value of ||G||g but with larger
magnitude.

If Bi=1, D; =1,T — oo, we can depict the change of determinate and Hankel norm

in Figure 5.6.
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Figure 5.5: The asymptotic behavior of |G|y for large T
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Figure 5.6: The asymptotic behavior of ||G||y for large T’
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Example 5.2 Given the system with two input delays :

T = —z(t) +ult)+ by u(t —1)+ by u(t — 2)
y(t) = z(t)+ult—1)+ult—2)
Case 1: by = by = 0. Only the effect of D; terms is studied.

Since A = —]_, Bg = ]_, Bl = 0, B2 = 0, C = ]_, D1 = ]_, DQ =1. By Lemma 52, the
upper bound of Hankel norm is 3. Since

-1 0 0 0] [0 0 0 0]
0 -1 0 0 0 0 0 0
Ao = o(o? = 1) pu ,Bs = o2et=l (02 —1)et~2 R
— —— 1 0 0o 0 - — — — 0
G G G G
7g 7U(U2A7 2) - 0 o ~(0? 7})615—1 2 .
& & & & -
et 0 0 0
0 et 0 0
e(o,t) = a(a? —1)(e~t —et) ole”t —et) , tet(otel4o2e 2 —e2) o |
_ g —°) et —
26 26 G
oe”t —et) (02 —2)(e~t —et) tet(o2e”! —e 1 4 e72) ¢
- - e
26 26 o
- et . get—1 .
2 _ 1 2 _ 1
Bu(t) = 7 j )
0 0 —e7? o0
o
1 o2et (62 —1)e™? oet~1o% —14e7 1) 0
@ = ~ )
T (62 =1)et et get~ 11+ (62 —2)e” ) 0
where
6=0"-30"+1
then the Hankel singular values, from Theorem 5.3, o are determined by
et -1 0 0|
a(o? —1)(e! —e™ 1) ae! —e 1) e(o?e ! + 0272 —e72) 1
- _ae = ) e — -
26 26 o
det
ole! —e 1) el (6?2 -2)(et —e™}) el(o?e !t —e !t +e72) .
26 20 206 G
olel —e 1) e o2 —1+e 1) 0.0092 cge %(02 + 022 —e? +2e! —2)(e? — 1) 0
26 ly o 26 4
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The possible solutions are 0.074903, 0.602657, 0.619083, 1.587781, and 2.063865. Thus the
Hankel norm of this system is 2.063865.

Case 2 : by = by = 1, i.e. the system realization is given by:
z(t) = —x(t) +ult)+ult—1)+ut—2)
y(t) = z(t)+ult—1)+u(t—2)

where the effect of B; is included in. Similarly the Hankel norm by Lemma 5.2 is 5. By
using our MATLAB code, Hankel norm of this system is 3.33544 which is larger than the

previous case with B; terms.
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Chapter 6

Conclusions

This thesis constructs the computational method for the Hankel norm of stable linear
time-invariant systems with multiple input delays. Some conclusions and discussions could

be drawn as follows :

6.1 Conclusion and Discussion

1. The stability of delay systems is analyzed by using the concept of stability equivalence.
Under the existence of the solution of certain matrix algebraic equation, the stability

of delay systems is determined by the system matrix of a delay-free system.

2. The Hankel operator for linear systems with feedthrough-type input delays and its

adjoint are constructed.

3. The compactness of this operator is then examined. In general the Hankel operator

of these systems are noncompact unless there is no feedthrough terms in input delays.
4. The norm computation of Hankel operator is studied in two different approaches :

(a) Based on definition of induced operator norm which is transformed into one-

parameter optimization problem and then solved by using variational principle.

(b) Based on the fact that the value of norm is equal to the largest singular value of

the operator and we arrive at a set of integral equations.
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6.2

References

After change of variables and using lifting technique, the key issues in these two ap-
proaches are resolved into solving a system of differential-algebraic equations defined

on the closed interval with delay-time as its length.

. The Hankel norm is characterized as largest zero of the determinant of a complex

matrix containing the value of norm (or equivalently, singular value) its unknown
variable. The effect of delay time-length and the influence of the number of delays

are included in the entries of this complex matrix.

. Some illustrative examples are presented to demonstrate Hankel norm computation

which shows that although the magnitude of the Hankel norm will increases when the
time-length and number of delays increase but there exists an upper bound for large

delay time.

Future Direction

The following problem are worthy for future study :

. How to find ©(t) in chapter 3 7

. How to construct the Hankel operator and adjoint Hankel operator for dynamical

systems with state delay ?

. How to compute the Hankel norm and Hankel singular values for state-delay systems

?

. Model reduction : given an m x m transfer function G € RH* with McMillan degree

n, how to find an m x m transfer function G € RH>® with McMillan degree no more

than k and k < n, such that |G — G|y is minimized ?
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Appendix A

Numerical Codes

A.1 Matlab code for solving e40ITQ(0) = A,

hobject: compute solution of g
%use Newton method
hg=Q-expm(-A-Q)*B where Q,A,B are matrix

»If g is a matrix

% f:M(R)_2x2 ----- >M(R) _2x2
h [a b] [g(1) g(2)]
h [c d] [-——————- > [g(3) g(4)]

%If g is a map
% g:R"4 ———> R"4
% (a,b,c,d) |----- >(g(1),g(2),g(3),g(4))

% use Numerical Differentiation compute D(g)_4x4

clear format long global A; global B;

hA=[-1 -3;2 -5];

#B=[1.66 -0.697;0.93 -0.33];

A=[-1 0;0 -2]; B=[1 0;0 0.5]; double(A); double(B);

Q=input (’Enter inital Q(0)=’); error=input(’Enter error=’);
t=cputime; x(1)=Q(1,1); x(2)=Q(1,2); x(3)=Q(2,1); x(4)=Q(2,2);
double(Q); g=double(Q-expm(-A-Q)*B); x=x’; S=x’; y=x+1; N=0;
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82 APPENDIX A.

while (norm(g,inf)>error | norm(y-x,inf)>error) & N<100
if abs(det(J))<107(-4)
close(bar);
disp(’input other Q’);
exercise Jrecurive(file name is exercise)
flag=0;
return J%break out while loop
else
g=double (Q-expm(-A-Q)*B) ;
J=Jcobin4 (x) ;
y=x;
x=x-inv(J)*[g(1);g(2);g(3);g(4)]1;
Q(1,1)=x(1);
Q(1,2)=x(2);
Q(2,1)=x(3);
Q(2,2)=x(4);
S=[S;x’1;
N=N+1;
waitbar (N/100,bar);
end

end

close(bar);

if N<100 & flag==
disp(’ result:’);
fprintf(’ iteration number=%d\n’,N);
fprintf(’ run time=Y%f sec\n’,cputime-t);
disp(’ Error =’);
disp(g);
disp(’ roots are=’);

disp(’N | X 17);

NUMERICAL CODES



A.l. MATLAB CODE FOR SOLVING EX+°0ITQ(0) = A,

fprintf(°%d [’,1);
disp(S(i,1:4));
end
else
disp(’maximum number of iterations exceeded’);

end

% object:compute Jcobin of g

b

% use Numerical Differentiation

b

% £’(a)=(£f(a+h)-f(a-h))/2h + 0(h"2)

b

%  g_negative_h(1) mean gil(a-h)

»  g_plus_h(1) mean g2(a+h)

b

% So gi’(a)=(gl(a+h)-g(a-h))/2h + 0(h~2)

function J=Jcobin4(x)

global A; global B;

hA=[-1 -3;2 -5];

#B=[1.66 -0.697;0.93 -0.33];

Q=[x(1) x(2);x(3) x(d];

double(Q);

h=10"(-5);

double(x);
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temp=x;

for i=1:4
for j=1:4

x(j)=x(j)+h;

Q=[x(1) x(2);x(3) x(4];

g_plus_h=double (Q-expm(-A-Q)*B) ;

x=temp;

x(j)=x(j)-h;

Q=[x(1) x(2);x(3) x(4];

g_negative_h=double (Q-expm(-A-Q)*B) ;

J(i,j)=double((g_plus_h(i)-g_negative_h(i))/(2%h));

x=temp;

end

end



A.2. MATLAB CODE FOR COMPUTING HANKEL NORM

A.2 Matlab code for computing Hankel norm

Matlab code for computing Hankel norm by Theorem 5.2.
Case 1:

If b; and by terms are zero, then we can directly solve the solutions

system matrix anvy2z.m > v

hanvymatrix2.m
% function svd=anvy(A,B0,B1,B2,C,D1,D2,T)
% define symbolic variables for further use

global ABOB1B2CD1D2TmnpgqlNzxc

syms s t k ; % s=sym(’s’);t=sym(’t’) ;k=sym(’k’);

% Declare the system parameters

% A=sym(’-1);BO=sym(’1’) ;Bl=sym(’0’) ;B2=sym(°0’) ;C=sym(’1’);
%D1=sym(’0’) ;D2=sym(’0’);

%h T=sym(’1°);

A=-1; BO=1; B1=0; B2=0; C=1; D1=1; D2=0; T=2;

q=2; n=1; m=1; p=1; N=2;

D=[D1 D2;D2 zeros(p,m)];
Ds=s"~2*eye(q)-D’*D;

Ig=eye(q); % Ig=sym(’[1 0;0 11°);

At=kron(Iq,A);

Ct=kron(Iq,C’*C); Ahat=[At zeros(g+*n);-(1/s)*Ct (-1)*At’]+[B1

B2;B2 zeros(n,m);-(1/s8)*C’>*D1 -(1/8)*C’*D2;-(1/s)*C’*D2

zeros(n,m)]*inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n)
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s*B2’ zeros(n,m)]

Bhat=[B1 B2;B2 zeros(n,m);-(1/s)*C’*D1 —-(1/s)*C’>*D2;-(1/s)*C’*D2
zeros (n,m)]*inv(Ds)* [0 s*BO’*expm(-A’*(k-T)) ;0
s* (B0’ *expm(-A’* (k-2%xT) )+B1’*expm(-A’*(k-T)))];

Chat=expm(Ahat*t)*[1 0;0 0;0 1;0 O0]+int(expm(Ahat*(t-k))*Bhat,k,0,t)
ChatT=subs(Chat,’t’,T);
%ChatT=Chatfun(s,T);

Dhat=expm(Ahat*t)*[0 0 0 0;1 0 0 0;0 0 0 0;0 0 1 0]
DhatT=subs(Dhat,’t’,T);

Wt=Chat+Dhat*inv(eye (2*q)-DhatT)*ChatT

WT=subs(Wt,’t’,T);

Ht=inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n) s*B2’ zeros(n,m)]x*...
Wt+inv(Ds)*[zeros(m,n) s*BO’*expm(-A’*(t-T)) ;zeros(m,n)

s*(BO’*expm(-A’*(t-2%T))+B1’*expm(-A’*(t-T)))]

%Q=1int (expm (A’ *t) *C’ *Cxexpm(A*t) ,t,0,inf)

#Pn=int (expm(-A*t)* (BO+expm(-A*T) *Bl+expm(-A*2+T)*B2) * (BO’+B1’xexpm(-A’*T) ...
%+B2’ *xexpm (-A*2*T) ) xexpm(-A’*t) ,t,-inf,0)

sys=ss(A,B0,C,zeros(p,m));

Q=gram(sys,’0’);

sysn=ss (A,expm(-2*T*A) *B2+expm(-T*A) *B1+B0,C,zeros(p,m)) ;

Pn=gram(sysn,’c’);

Gl=int (expm(-A* (t-2%T))*BOxHt (2,1)+
expm(-A*(t-T))*(BO*Ht (1,1)+B1*Ht(2,1)),t,0,T);
%G1=PsiT(s,T)

G2=int (expm(-A* (t-2*T) ) *BO*Ht (2,2)+
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expm(-A* (t-T))*(BO*xHt (1,2)+B1*Ht(2,2)),t,0,T);

P=expm(N*Ax*T) *Pn*expm(N*A’*T) ; format long;

F=[(1/8)*Q -1;0 0]*[WT(q,1) WT(q,2);WT(2*q,1) WT(2*q,2)]1+[0
0;-1+G1 (1/8)*P+G2];

detF=expand(det (F))

svd=double (solve (vpa(detF),s))

Case 2:

If by and by terms are not both zero, then the process of solving is

system matrix

Y

estimate
nvydelay2norm.x

joV)

A

Y

anvy2funz.m

PN

s

PsiTz.m PciTz.m

\gusspoint.ni//v

global ABOB1 B2CDID2TmnpgqlNzxc

A=-1; BO=1; B1=0; B2=0; C=1; D1=0; D2=0; T=1;

q=2; n=1; m=1; p=1; N=2;
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format rat; D=[D1 D2;D2 zeros(p,m)];
spect_radius=sqrt(max(eig(D’*D))) hold on;

begin_sigma=spect_radius+0.1;

N=20; length_sigma=1.5;
end_sigma=begin_sigma+length_sigma;

delta_sigma=length_sigma/N;

values=zeros(N+1,2);

for i=1:N+1
sigma=begin_sigma+delta_sigma*(i-1);
values(i,1)=sigma

values(i,2)=anvy2funz(sigma)

end
plot(values(:,1),values(:,2)) axis([0.1,2,-10,10]);

grid on

hanvy2funz.m

function value=anvy2funz(sigma)

global ABOB1 B2CD1ID2TmnpgqlN=zxc
gusspoint (10) ;

s=sigma; syms t k;

D=[D1 D2;D2 zeros(p,m)];

Ds=s"2xeye (q)-D’*D;

Ig=eye(q); % Ig=sym(’[1 0;0 1]°’);

At=kron(Iq,A);

Ct=kron(Iqg,C’*C);

NUMERICAL CODES



A.2. MATLAB CODE FOR COMPUTING HANKEL NORM

Ahat=[At zeros(g*n);-(1/s)*Ct (-1)=*At’]+[B1 B2;B2

zeros(n,m) ;-(1/s)*C’*D1 —(1/s)*C’*D2;-(1/s)*C’*D2
zeros(n,m)]*inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n)
s*B2’ zeros(n,m)];

%ChatT=Chatfun(s,T);

%#Dhat=expm(Ahat*t)*[0 0 0 0;1 0 0 0;0 0 0 0;0 O 1 0];

DhatT=expm(Ahat*T)*[0 0 0 0;1 0 0 0;0 0 0 0;0 O 1 0];

WT=Chatfunz(s,T)+DhatT*inv (eye (2*q)-DhatT)*Chatfunz(s,T);

IWT=subs (Wt,’t’,T);

%Q=int (expm(A’*t) *C’*Cxexpm(A*t) ,t,0,inf)

#Pn=int (expm(-A*t)* (BO+expm(-A*T) *Bl+expm(-A*2%T)*B2) * (BO’+B1’xexpm(-A’*T) ...

%+B2? *xexpm (-A*2*T) ) xexpm(-A’*t) ,t,-inf,0) ;

sys=ss(A,B0,C,zeros(p,m)); Q=gram(sys,’o’);

sysn=ss (A,expm(-2*T*A) *B2+expm(-T*A) *B1+B0,C,zeros(p,m)) ;

Pn=gram(sysn,’c’);

G1=PsiTz(s,T);

G2=PciTz(s,T);

P=expm (N*A*T) *Pn*expm(N*A’*T) ;

F=[Q 1;0 0I1*[WT(q,1) WT(q,2);WT(2*q,1) WT(2*q,2)]1+[0 0;1-G1
(1/s°2)*P-G2];
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detF=det (F) ;

format long ;

value=real (det (vpa(F)));

%chatfunz.m
function value=Chatfun(s,t)

global ABOB1B2CD1D2TmnpglNzxc

D=[D1 D2;D2 zeros(p,m)]; Ds=s"2*eye(q)-D’*D;

Ig=eye(q); % Ig=sym(’[1 0;0 11°);

At=kron(Iqg,A);

Ct=kron(Iq,C’*C); Ahat=[At zeros(g*n);-(1/s)*Ct (-1)*At’]+[B1
B2;B2 zeros(n,m);-(1/s)*C’*D1 -(1/s)*C’>*D2;-(1/s)*C’*D2
zeros(n,m)]*inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n)
s*B2’ zeros(n,m)];

% Initialize

a =0;

b =t;

if nargin<3
np = 10;

end

y = 0;

% Estimate integral
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(b - a)/2;
(b + a)/2;

alpha

beta
fori =1 : np

k = alpha*x(i)+beta;

expmkTA

expm(-(k-T)*A’);
expmk2TA

expm(-(k-2%T)*A’);
Bhat=[B1 B2;B2 zeros(n,m);-(1/s)*C’*D1 -(1/s)*C’>*D2;-(1/s)*C’*D2
zeros (n,m)]*inv(Ds)*[0 s*BO’*expm(-A’*(k-T)) ;0
s* (B0’ *expm (-A’* (k-2%T) )+B1’*xexpm(-A’*(k-T)))];
y = y + c(i)*expm(-Ahatxk)*Bhat;
end
y = alphaxy;
b
U4k sk ok sk o ok ook ook ook ok ok ok ok ook Kok ok oK Kok ok ok ok Kok sk ok ok Kok ok sk Kok ok ok ok Kok ok ok Kok Kok Kok Kok
b

value=expm(t*Ahat)*([1 0;0 0;0 1;0 0]+y);

%PicTz.m

function value=PciT(s,k) global A BOB1 B2 C DI D2TmnpglNzxc

D=[D1 D2;D2 zeros(p,m)]; Ds=s"2*eye(q)-D’*D;

Ig=eye(q); % Ig=sym(’[1 0;0 11°);

At=kron(Iq,A);

Ct=kron(Iq,C’*C);

Ahat=[At zeros(g#*n);-(1/s)*Ct (-1)*At’>]+[B1 B2;B2
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zeros(n,m) ;-(1/s)*C’*D1 —(1/s)*C’*D2;-(1/s)*C’*D2
zeros(n,m)]*inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n)

s*B2’ zeros(n,m)];

ChatT=Chatfunz(s,T);

% Initialize

gusspoint (10) ;
y=0;

%y Estimate integral

(b - a)/2;
(b + a)/2;

alpha

beta

for i =1 : np

k=alpha*x(i)+beta;

Dhat=expm(Ahat*k)*[0 0 0 0;1 0 0 0;0 0 0 0;0 O 1 0];

DhatT=expm(Ahat*T)*[0 0 0 0;1 0 0 0;0 0 0 0;0 0 1 0];

Wk=Chatfunz(s,k)+Dhat*inv(eye(2*q)-DhatT) *ChatT;

Hk=inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n) s*B2’ zeros(n,m)]x*...

Wk+inv(Ds)*[zeros(m,n) s*BO’*expm(-A’*(k-T)) ;zeros(m,n)
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s* (B0’ *expm(-A’* (k-2*T) ) +B1’ *expm(-A’*(k-T)))];
Gk=expm(-A* (k-2*T) ) *BO*Hk (2,2) +expm(-Ax* (k-T) ) * (BO*Hk (1,2) +B1*Hk(2,2)) ;
y =y+c (i) *Gk;
end

y = alphaxy;

%********************************************************************************

T

value=y;

%PsiTz.m

function value=PsiT(s,k) global A BOB1 B2 CD1i1 D2 TmnpglNzxc

D=[D1 D2;D2 zeros(p,m)]; Ds=s"2*eye(q)-D’*D;

Ig=eye(q); % Ig=sym(’[1 0;0 11°);

At=kron(Iq,A);

Ct=kron(Iq,C’*C);

Ahat=[At zeros(g*n);-(1/s)*Ct (-1)=*At’]+[B1 B2;B2

zeros(n,m) ;-(1/s)*C’*D1 —(1/s)*C’*D2;-(1/s)*C’*D2

zeros(n,m)]*inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n)

s*B2’ zeros(n,m)];

ChatT=Chatfunz(s,T);



94 APPENDIX A. NUMERICAL CODES

% Initialize

a =0;
b = k;

np = 10;
gusspoint (10) ;
y = 0;

% Estimate integral

(b - a)/2;
(b + a)/2;

alpha

beta

for i =1 : np

k=alpha*x(i)+beta;

Dhat=expm(Ahat*k)*[0 0 0 0;1 0 0 0;0 0 0 0;0 O 1 0];

DhatT=expm(Ahat*T)*[0 0 0 0;1 0 0 0;0 0 0 0;0 0 1 0];

Wk=Chatfunz(s,k)+Dhat*inv(eye(2*q)-DhatT) *ChatT;

Hk=inv(Ds)*[D1’*C D2’*C s*B1’ s*B2’;D2’*C zeros(m,n) s*B2’ zeros(n,m)]x*...

Wk+inv(Ds) * [zeros(m,n) s*BO’*expm(-A’*(k-T));zeros(m,n)

s* (BO?*expm(-A’*(k-2%T))+B1’*expm(-A’*(k-T)))]1;

Gk=expm(-A* (k-2*T) ) *BO*Hk (2,1)+expm(-A* (k-T) ) * (BO*Hk (1,1)+B1xHk(2,1));

y =y+c (i) *Gk;

end
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y = alphaxy;

%**********************************************************************************

h

value=y;

function gusspoint(np) global ABOB1 B2CDID2TmnpgqlN=xc

ol
]

zeros (np,1);

(@]
]

zeros (np,1);

% Compute parameters

switch (np)

case 1; x(1) = 0.0;
c(l) = 2.0;

case 2; x(1) = 0.5773503; x(2) = -x(1);
c(1) =1; ¢c(2) = c(1);

case 3; x(1) = 0.0;
x(2) = 0.7745967; x(3) = -x(2);
c(1) = 0.8888889;
c(2) = 0.5555556; c(3) = c(2);

case 4; x(1) = 0.3399810; x(2) = -x(1);
x(3) = 0.8611363; x(4) = -x(3);
c(1) = 0.6521452; c(2) c(1);
c(3) = 0.3478548; c(4) c(3);

case 5; x(1) = 0.0;
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case 6;

case 7;

case 8;

case 9;

x(2)
x(4)
c(1)
c(2)
c(4)

x(1)
x(3)
x(5)
c(1)
c(3)
c(5)

x(1)
x(2)
x(4)
x(6)
c(1)
c(2)
c(4)
c(6)

x(1)
x(3)
x(5)
x(7)
c(1)
c(3)
c(5)
c(7)

x(1)
x(2)
x(4)

o O O O o

O O O O O O o o O O O O O O

O O O O O o o o

.5384693;
.9061798;
.5688880;
.4786287;
.2369269;

.2386192;
.6612094;
.9324695;
.4679139;
.3607616;
.1713245;

.0;

.4058452;
.7415312;
.9491079;
.4179592;
.3818301;
.2797054;
.1294850;

.1834346;
.5255324;
. 7966665 ;
.9620899;
.3626838;
.3137066;
.2223810;
.1012285;

.0;
.3242534;
.6133714;

x(3)
x(5)

c(3)
c(5)

x(2)
x(4)
x(6)
c(2)
c(4)
c(6)

x(3)
x(5)
x(7)

c(3)
c(5)
c(7)

x(2)
x(4)
x(6)
x(8)
c(2)
c(4)
c(6)
c(8)

x(3)
x(5)

-x(2);
-x(4);

c(2);
c(4);

-x(1);
-x(3);
-x(5);
c(1);
c(3);
c(5);

-x(2);
-x(4);
-x(6);

c(2);
c(4);
c(6);

-x(1);
-x(3);
-x(5);
-x(7);
c(1);
c(3);
c(5);
c(7);

-x(2);
-x(4);
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x(6)
x(8)
c(1)
c(2)
c(4)
c(6)
c(8)

case 10; x(1)

end

x(3)
x(5)
x(7)
x(9)
c(1)
c(3)
c(5)
c(7)
c(9)

O O O O o o o

.8360311;

.9681602;

.3302394;

.3123471;

.2606107;

.1806482;
.0812744;

O O O O O O O o o o

.1488743;
.4333954;
.6794096;
.8650634;
.9739065;
.2965242;
.2692602;
.2190864;
.1494513;
.0666713;

x(7)
x(9)

c(3)
c(5)
c(7)
c(9)

x(2)
x(4)
x(6)
x(8)
x(10)
c(2)
c(4)
c(6)
c(8)
c(10)

-x(6);
-x(8);

c(2);
c(4);
c(6);
c(8);

-x(1);
-x(3);
-x(5);
-x(7);
-x(9);
c(1);
c(3);
c(5);
c(7);
= c(9);
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A.3 Matlab code for computing Hankel singular value

Matlab code for computing Hankel singular value by Theorem 5.3.
Case 1:

If by and by terms are zero, then we can directly solve the solutions

system matrix > anvy2.m " o

global A BOB1 B2CD1D2Tmnopg

A=-1; B0O=0; B1=1; B2=0; C=1; D1=0; D2=0; T=0;

g=2; n=1; m=1; p=1;

syms s t k ; % s=sym(’s’);t=sym(’t’) ;k=sym(’k’);

% n - dimensions of the state-space

% m - no. of input varibles

% n - no. of output varibles

% a - no. of delays

Ig=eye(q); h Iq = identity matrix of size q x q;

varphit=varphifun(s,t);
%hvarphi(s,t)=expm(t*As)+int (expm((t-tau) *As) *Bs,tau,0,t) ;
varphiT=varphifun(s,T);
%hvarphi(s,T)=expm(T*As)+int (expm((T-tau) *As) *Bs,tau,0,T) ;

sys=ss(A,B0,C,zeros(p,m)); Q=gram(sys,’o’);
h
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#Pn=int (expm( (-1) ¥*k*A) * (expm (2*T*A) *BO+expm (T*A) *B1+B2) *. . .

A (BO’ *expm(2*T*A’)+B1’ *expm(T*A’)+B2’ ) xexpm( (-1) *k*A’) ,k,—-inf,0) ;
hexpmtA=expm(t*A) ;

sysn=ss (A,expm(2xT*A) *BO+expm(T*A) *B1+B2,C,zeros(p,m) ) ;

Pn=gram(sysn,’c’);

%PHIt=int ([zeros(n,m) zeros(n,m) subs(expmtA,’t’,(-1)*(t-T))*BO...

%hsubs (expmtA, ’t’, (-1) *(t-2*T) ) *xBO+subs (expmtA,’t’, (-1) *(t-T) ) *B1] *Ht ,t,0,T) ;
%PHIt=simplify (PHIt) ;

PhiT=phiTfun(s,T);

R=zeros(2%q,2*q) ; 4R=[In(1,:);In(3,:);In(2,:);In(4,:)];
WR=[In(1,:);In(3,:);In(2,:);In(4,:)];
for i=1:q
j=2xi-1;
R(j,1)=R(j,i)+1;
R(j+1,i+q)=R(j+1,i+q)+1;
end

F=[1 0 0 0;0 1 0 0;0 0 -1/s*Q 1;0 O O O]*R*varphiT+...

[00-10;000-1;00 0 0;(1-PhiT(:,1)) -(1/s*Pn+PhiT(:,3)) -PhiT(:,2) -PhiT(:,4)]...

*R;
detF=expand(det (F)) ;%
format long ; %

svd=solve(vpa(detF),s)
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Case 2:

If by and by terms are not both zero, then the process of solving is

system matrix

Y

estimate
anvydelaysvd.m| y

A

Y

delaysvdl.m

PN

varphifun.m phiTfun.m

\,usspoint.m‘//v

hanvydelaysvd.m

clear global ABOB1 B2CDID2Tmnpagzxc

A=-1; B0=0; B1=1; B2=0; C=1; D1=1; D2=0;
hT=3;

g=2; n=1; m=1; p=1; format rat; D=[D1 D2;D2 zeros(p,m)];
spect_radius=sqrt(max(eig(D’*D))) T=1;
%hfor qq=1:20

for j=0:100

begin_sigma=spect_radius+0.1%j;

hold on
N=40; length_sigma=0.1; end_sigma=begin_sigma+length_sigma;

delta_sigma=length_sigma/N;
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values=zeros (N+1,2);

for i=1:N+1
sigma=begin_sigma+delta_sigma*(i-1);
values(i,1)=sigma

values(i,2)=delaysvdl(sigma)

end plot(values(:,1),values(:,2)) axis([1,2.5,-10,10]); grid on

end
%T=T+0.2
%end

hdelaysvdl.m
function value=delaysvdl(sigma)

global ABOB1B2CD1D2Tmnpagqgzxc

s=sigma;

syms t k;

Ig=eye(q); % Igq=sym(’[1 0;0 1]1’);

gusspoint (10) ;

varphiT=varphifun(s,T);
%hvarphi(s,T)=expm(T*As)+int (expm((T-tau) *As) *Bs,tau,0,T) ;

% Q=int (expm(k*A)*C’*Cxexpm(k*A) ,k,0,inf) ;

sys=ss(A,B0,C,zeros(p,m)); Q=gram(sys,’o’);

#Pn=int (expm( (-1) ¥*k*A) * (expm (2*T*A) *BO+expm (T*A) *B1+B2) *. . .

A (BO’ *expm(2*T*A’)+B1’ *expm(T*A’)+B2’ ) xexpm( (-1) ¥k*A’) ,k,~-inf,0) ;
expmtA=expm(t*A) ;

sysn=ss (A,expm(2xT*A) *BO+expm(T*A) *B1+B2,C,zeros(p,m) ) ;

Pn=gram(sysn,’c’);

101
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PhiT=phiTfun(s,T);

%R=[1 00 0;0010;0100;0001];

R=zeros(2*qg*n,2*q#*n); for i=1:g*n
j=2%i-1;
R(j,i)=R(j,i)+1;
R(j+1,i+g*n)=R(j+1,i+q*n)+1;

end

%F=[1 00 0;0 1 0 0;0 0 -1/s*Q 1;0 O O O]*R*WT+

%[0 0 -1 0;000 -1;0 0 0 0;(1-PHIt(1,1)) -(1/s*Pn+PHIt(1,3))
%-PHIt(1,2) -PHIt(1,4)]1*R;

F=[eye (2*(g-1)*n) zeros(2x(q-1)#*n,2*n);zeros(2*n,2*(q-1)*n)
[-1/s*Q eye(n);zeros(n) zeros(n)]]*R*varphiT...
+[zeros(2*(q-1)*n,2*n)

(-1)*eye (2% (g-1) *n) ;zeros(n,2*q*n) ;eye(n)+(-1)*PhiT(:,1:n)
-(1/s*Pn+PhiT(:,2*n+1:3%n)) -PhiT(:,n+1:2%n)-PhiT(:,3*n+1:4%n)]*R;

value=det (vpa(F));

hvarphifun.m

function value=varphifun(s,t)

%********************************************************************
% Usage: value=varphifun(s,t)

b

% Purpose: compute the following function

b

h \varphi(\sigma,t) = e {t*A_{\sigma}}

% +\int_{0}"{t} e“{A_{\sigmal}(t-tau)} B_{\sigma}(\tau) d\tau;
b
%*********************************************************************
b

% Mnemonics:

T
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h
b
b
b
h
b
b
b
b
b
b
b
b
b
b
b
b
b
b
h
h
h
h
h
h
h
h

Inputs:

local variables: Iq

Outputs:

denote the singular value \sigma

0
|

t - time

identity matrix of size q x q;
h

value - the value of function varphi at (s,t)

Global variables:

A
BO
B

the system state matrix A
the system input matrix BO for non-delay terms

collect all the system input matrix related to delay in

state equation, i.e., B=[B_1 B_2 ... B_{g-1} B_q]
[B.2 B3 ... B_q 0 1
[: : : : ]
[B.g 0 ... O 0 1

the system output matrix

collect all the system input matrix related to delay in

output equation, i.e., D=[D_1 D_2 ... D_{g-1} D_q]
[D.2D.3 ... D_g 0 1
L: : : 2]
[Dg O ... O 0 1

unit delay time

the dimension of input vector
the dimension of state vector
the dimension of output vector

the number of delays

%****************************************************************************

h

global A BOB1 B2CD1D2Tmnpagqzxc

Ig=eye(q);

h Iq = identity matrix of size q x q;
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D=[D1 D2;D2 zeros(p,m)];

At=kron(Iq,A); B=[B1 B2;B2 zeros(n,m)]; Ct=kron(Iq,C);

Ds=s*eye (2x(p+m)) - [zeros(2xp,2xp) D;D’ zeros(2xm,2xm)] As=[At

zeros (2*n,2+*n) ;zeros(2*n,2*n) (-1)*At’]+...

[zeros(2#n,2*p) B;(-1)*Ct’ zeros(2#n,2+*m)]*inv(Ds)*[Ct

zeros (2*p,2*n) ; zeros (2*m,2*n) B’]

ek ok sk ok o ok o ok o ok o ok o K ok KK ok KKK Kok K K KoK o K K Kk ok KKK Kok K Kk ok o K ok Kok ok
b

% Description:

% The following code use the n-point Gauss-Legendre formula to numerically
%  integrate the function e"{A_{\sigma}(t-tau)} B_{\sigmal}(\tau)

% over the interval [a,b].

/

% Inputs: a = lower limit of integration

b b = upper limit of integration

h np = number of points (1 <= np <= 10)
b

/ Outputs: y = estimate of integral

)
h
%*****************************************************************************
)

h

% Initialize

a =0;
b =t;

if nargin<3

np = 10;
end
y=0;
gusspoint (10);

% Estimate integral
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alpha = (b - a)/2;
beta = (b + a)/2;
for i =1 : np

k = alphax*x(i)+beta;

expmkTA expm(-(k-T)*A’);

expmk2TA

expm (- (k-2%T)*A’) ;
Bk=[B0’*expmkTA zeros(m,n) ;BO’*expmk2TA+B1’ *expmkTA zeros(m,n)];
Bs=[zeros(2*n,2*p) B;(-1)*Ct’ zeros(2*n,2*m)]*inv(Ds)*. ..

[zeros(2*p,2*n) zeros(2#*p,2#n);zeros(2*m,2*n) Bk]

y =y + c(i)*expm(-As*k)*Bs;
end
y = alphaxy;
b

%****************************************************************************

value=expm(t*As)*(eye (size (As))+y);

sphiTfun.m

function value=phiTfun(s,t)

b
%****************************************************************************
% Usage: value=varphifun(s,t)

b

% Purpose: compute the following function

h \varphi(\sigma,T) = e {T*A_{\sigmal}

b +\int_{0}"{T} e~ {A_{\sigmal}(T-tau)} B_{\sigma}(\tau) d\tau;

h
%****************************************************************************
h

% Mnemonics:

h

h Inputs: S - denote the singular value \sigma

h t - time
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h

h local variables: Iq - identity matrix of size q x q;
h h
h Outputs: value - the value of function varphi at (s,t)

h

h Global variables:

b A - the system state matrix A

h BO - the system input matrix BO for non-delay terms

h B - collect all the system input matrix related to delay in
% state equation, i.e., B=[B_1 B_2 ... B_{g-1} B_q]

b [B.2 B_.3 ... B_q 0 1

b [: : : : ]

h [B.g 0 ... O 0 1]

b C - the system output matrix

h D - collect all the system input matrix related to delay in
% output equation, i.e., D=[D_1 D_2 ... D_{g-1} D_q]

b [D_.2 D3 ... D_g 0 1

b [: : : : ]

h [Dg 0 ... O 0 1]

b T - unit delay time

b m - the dimension of input vector

b n - the dimension of state vector

b p - the dimension of output vector

b q - the number of delays

h

%*****************************************************************************

h

global ABOB1B2CD1D2Tmnpaqzxc

Ig=eye(q); h Iq = identity matrix of size q x q;

At=kron(Iq,A); B=[B1 B2;B2 zeros(n,m)]; Ct=kron(Iq,C); D=[D1 D2;D2
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zeros(p,m)]; Ds=s*eye(2x(p+m))-[zeros(q*p,q*p) D;D’

zeros (q*m,qg*m)] ;

As=[At zeros(g#*n,qg*n) ;zeros(g*n,q*n) (-1)*At’]+[zeros(g*n,qg*p)
B; (-1)*Ct’> zeros(g*n,q*m)]*inv(Ds)*. ..

[Ct zeros(g*p,qg*n) ;zeros(q*m,g*n) B’];

% Initialize

a=0;

b =t;

if nargin<3

np = 10;
end
y=0;
gusspoint (10) ;

% Estimate integral

alpha = (b - a)/2;
beta = (b + a)/2;
for i =1 : np

k = alphax*x(i)+beta;

expmkTAT = expm(-(k-T)*A’);
expmk2TAT = expm(-(k-2*T)*A’);
expmkTA = expm(-(k-T)*A);
expmk2TA = expm(-(k-2*T)*4);

Bk=[BO’*expmkTAT zeros(m,n) ;B0’*expmk2TAT+B1’*expmkTAT zeros(m,n)];

varphit=varphifun(s,k);

%hvarphi(s,t)=expm(t*As)+int (expm((t-tau) *As) *Bs,tau,0,t);
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Ht=inv(Ds) * ([Ct zeros(g*p,q*n) ;zeros(q*m,qg*n)

B’]*varphit+[zeros(g*p,q*n) zeros(g*p,qg*n) ;zeros(q*m,g*n) Bk]);

expmtA=expm(t*A); Phithat=[zeros(n,m) zeros(n,m) expmkTA*BO
expmk2TA*BO+expmkTA*B1] ;

y = y + c(i)*Phithat*Ht;
end

y = alphaxy;

%*************************************************************************

value=y;

function gusspoint(np)

global ABOB1B2CD1D2TmnpgqlNzxc

o]
]

zeros (np,1);

(@]
]

zeros (np,1);

% Compute parameters

switch (np)

case 1; x(1)

c(1)

0.0;
2.0;

0.5773503; x(2) = -x(1);
1; c(2) = c(1);

case 2; x(1)

c(1)

case 3; x(1) 0.0;
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case 4;

case 5;

case 6;

case 7;

case 8;

x(2)
c(1)
c(2)

x(1)
x(3)
c(1)
c(3)

x(1)
x(2)
x(4)
c(1)
c(2)
c(4)

x(1)
x(3)
x(5)
c(1)
c(3)
c(5)

x(1)
x(2)
x(4)
x(6)
c(1)
c(2)
c(4d)
c(6)

x(1)
x(3)

(@]

o O O O o o O O O O O O SO O O O

O O O O O o o o

(@]

.7T745967;
.8888889;
.55565556;

.3399810;
.8611363;
.65621452;
.3478548;

.0;

.5384693;
.9061798;
.5688880;
.4786287;
.2369269;

.2386192;
.6612094;
.9324695;
.4679139;
.3607616;
.1713245;

.0;

.4058452;
.7415312;
.9491079;
.4179592;
.3818301;
.2797054;
.1294850;

.1834346;
.5265324;

x(3)

c(3)

x(2)
x(4)
c(2)
c(4)

x(3)
x(5)

c(3)
c(5)

x(2)
x(4)
x(6)
c(2)
c(4)
c(6)

x(3)
x(5)
x(7)

c(3)
c(5)
c(7)

x(2)
x(4)

-x(2);

c(2);

-x(1);
-x(3);
c(1);
c(3);

-x(2);
-x(4);

c(2);
c(4);

-x(1);
-x(3);
-x(5);
c(1);
c(3);
c(5);

-x(2);
-x(4);
-x(6);

c(2);
c(4);
c(6);

-x(1);
-x(3);
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x(5) = 0.7966665; x(6) = -x(5);
x(7) = 0.9620899; x(8) = -x(7);
c(1) = 0.3626838; c(2) = c(1);
c(3) = 0.3137066; c(4) = c(3);
c(5) = 0.2223810; c(6) = c(5);
c(7) = 0.1012285; c(8) = c(7);
case 9; x(1) = 0.0;
x(2) = 0.3242534; x(3) = -x(2);
x(4) = 0.6133714; x(5) = -x(4);
x(6) = 0.8360311; x(7) = -x(6);
x(8) = 0.9681602; x(9) = -x(8);
c(1) = 0.3302394;
c(2) = 0.3123471; c(3) = c(2);
c(4) = 0.2606107; c(5) = c(4);
c(6) = 0.1806482; c(7) = c(6);
c(8) = 0.0812744; c(9) = c(8);
case 10; x(1) = 0.1488743; x(2) = -x(1);
x(3) = 0.4333954; x(4) = -x(3);
x(5) = 0.6794096; x(6) = -x(5);
x(7) = 0.8650634; x(8) = -x(7);
x(9) = 0.9739065; x(10) = -x(9);
c(1) = 0.2955242; c(2) = c(1);
c(3) = 0.2692602; c(4) = c(3);
c(5) = 0.2190864; c(6) = c(5);
c(7) = 0.1494513; c(8) = c(7);
c(9) = 0.0666713; c(10) = c(9);

end
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