### Abstract

Let  $\Gamma$  denote the set of symmetrized bidisc. In this thesis we discuss the Schwarz lemma on  $\Gamma$  also known as the special flat problem on  $\Gamma$  as:

Given  $\alpha_2 \in \mathbb{D}$ ,  $\alpha_2 \neq 0$  and  $(s_2, p_2) \in \Gamma$ , find an analytic function  $\varphi : \mathbb{D} \to \Gamma$  with  $\varphi(\lambda) = (s(\lambda), p(\lambda))$  satisfies

$$\varphi(0) = (0,0), \ \varphi(\alpha_2) = (s_2, p_2)$$

Based on the equality of Carathéodory and Kobayashi distances, and the Schur's theorem, we construct an analytic function  $\varphi$  to solve this problem.

**Keywords:** Spectral Nevanlinna-Pick interpolation, Poincaré distance, Carathéodory distance, Kobayashi distance, Symmetrized bidisc, Schwarz lemma.

# Contents

| 1              | Introduction               |                                            |    |
|----------------|----------------------------|--------------------------------------------|----|
|                | 1.1                        | Notations                                  | 1  |
|                | 1.2                        | Motivation                                 | 3  |
| 2              | Mathematical Preliminaries |                                            |    |
| 3              | Main Results               |                                            |    |
|                | 3.1                        | Properties of $\Gamma$                     | 14 |
|                | 3.2                        | Ideal to Construct $\varphi$               | 20 |
|                | 3.3                        | Realization of Symmetrized Bidisc $\Gamma$ | 25 |
| 4              | Concluding Remarks         |                                            | 33 |
| ${f Appendix}$ |                            |                                            | 34 |
| $\mathbf{R}$   | efere                      | nce                                        | 36 |

# 1 Introduction

### 1.1 Notations

| Symbol                   | Meaning                                                                                            |
|--------------------------|----------------------------------------------------------------------------------------------------|
| $\mathbb{R}$             | The real value                                                                                     |
| $\mathbb{C}$             | The complex value                                                                                  |
| $\mathbb{D}$             | The set of $\{\lambda :  \lambda  < 1\}$                                                           |
| $\overline{\mathbb{D}}$  | The set of $\{\lambda :  \lambda  \le 1\}$                                                         |
| $\mathbb{T}$             | The unit circle                                                                                    |
| $ar{\sigma}(A)$          | The maximun singular value of A                                                                    |
| $\rho(A), \ \cdot\ _s$   | The value of $\max\{ \lambda  : \lambda \text{ are the eigenvalues of A}\}$                        |
| Γ                        | The set of $\{(s,p): \lambda^2 - s\lambda + p = 0, \ \lambda \in \mathbb{C}, \  \lambda  \leq 1\}$ |
| $int(\Gamma)$            | The set of $\{(s,p): \lambda^2 - s\lambda + p = 0, \ \lambda \in \mathbb{C}, \  \lambda  < 1\}$    |
| $T(M,\Delta)$            | The transfer function of the closed loop system M and $\Delta$                                     |
| $A_c$                    | The companion matrix of A                                                                          |
| $\mathbb{C}^{n 	imes n}$ | The $n \times n$ matrices with complex elements                                                    |
| $\ \cdot\ _{\infty}$     | The infinity norm                                                                                  |
| $\ \cdot\ _{\mu}$        | The $\mu$ -norm                                                                                    |
| $\partial\Omega$         | The boundary in arbitrary set $\Omega$                                                             |
| $C_{\Omega}(s,p)$        | The Carathéodory distance between two points $s$ and $p$ in arbitrary set $\Omega$                 |

 $K_{\Omega}(s,p)$  The Kobayashi distance between two points s and p in arbitrary set  $\Omega$ 

d(s,p) The Poincaré distance between two points s and p in  $\mathbb D$ 

 $\operatorname{diag}[\lambda_1,...,\lambda_n] \quad \text{ The diagonal matrix with entries } \lambda_1,...,\lambda_n$ 

#### 1.2 Motivation

There are two kinds of uncertainties in control systems, structured uncertainty and unstructured uncertainty.  $H^{\infty}$ -control theory solves the unstructured uncertainty systems by using the classical Nevanlinna-Pick interpolation theory. In robust  $H^{\infty}$ -controller design problem, we consider the following configuration:



Figure 1: Control configuration for uncertain systems.



Figure 2: M denote the closed-loop system G+K.

Where G is a system with structured uncertainty  $\Delta$ , and K is controller to

be designed. Let M denote the closed-loop system transfer function (G+K), i.e, and w and z are the noise and error signals, respectively. Two main essential ideas in robust  $H^{\infty}$ -control theory are:

**Robust Stability**:  $(M + \Delta)_{w=0, z=0}$  is internally stable.

**Robust Performance**: Let  $T(M, \Delta)$  be the transfer function of the closed-loop system  $(M + \Delta)$ . It is required that

$$\sup_{w} \frac{\|z\|_{2}}{\|w\|_{2}} = \|T(M, \Delta)\|_{\infty} < r$$

for a given desired criterion r depending on the system specification.

To design the robust controller for the system subject to a structured uncertainty, a new measurement ( $\mu$ -synthesis) has been established by Doyle et al. [6] in 1982. Let  $\Delta(jw) \in \mathbb{C}^{n \times n}$  define the structured uncertainty of the system with

$$\Delta = \{ \operatorname{diag}[\delta_1 I_{r1}, ..., \delta_q I_{rq}, \Delta_{n_1}, ..., \Delta_{n_k}] : \delta_i \in \mathbb{C} , \Delta_{n_t} \in \mathbb{C}^{n_t \times n_t} \}$$

where

$$\sum_{i=1}^{q} r_i + \sum_{i=1}^{k} n_i = n$$

For fixed  $w \in \mathbb{R}$ , the structured singular value is formally defined as follows:

$$||M(jw)||_{\mu} \triangleq \mu_{\Delta}(M(jw))$$

$$\triangleq \frac{1}{\inf\{\bar{\sigma}(\Delta(jw)), \Delta(jw) \in \Delta, \det(1 - M(jw)\Delta(jw)) = 0\}}$$

If  $\det(1 - M(jw)\Delta(jw)) \neq 0$  for all  $\Delta(jw) \in \Delta$ , we define  $||M(jw)||_{\mu} \triangleq 0$ .

When 
$$q = 1$$
,  $k = 0$ ,  $r_1 = n$ ,  $\Delta = \{\delta I_n | \delta \in \mathbb{C}\}$ , then

$$\mu_{\Delta}(M(jw)) = \rho(M(jw)) \triangleq ||M(jw)||_s;$$

When q = 0, k = 1,  $n_1 = n$ ,  $\Delta = \mathbb{C}^{n \times n}$ , then

$$\mu_{\Delta}(M(jw)) = \bar{\sigma}(M(jw)) \triangleq ||M(jw)||_{\infty}.$$

Based on the definition of  $\mu$  and the two special cases discussed above, we have

$$||M(jw)||_s \le ||M(jw)||_{\mu} \le ||M(jw)||_{\infty}$$

This fact is illustrated by the following example.

#### Example 1 Let

$$\Delta = \left[ egin{array}{cc} 1 & 0 \\ 0 & rac{1}{2} \end{array} 
ight], \; M = \left[ egin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} 
ight]$$

then  $||M||_s = 0$ ,  $||M||_{\mu} = 0$ ,  $||M||_{\infty} = 1$ .

The sufficient conditions for robust stability and robust performance can be expressed in terms of structured singular value:

$$||M||_{u} < 1, ||T(M, \Delta)||_{u} < r$$

where  $||M||_{\mu} = \sup_{w} ||M(jw)||_{\mu}$ .

The classical Nevanlinna-Pick interpolation problem is described below: Let  $\alpha_1, ..., \alpha_n \in \mathbb{D}$ ,  $W_i \in \mathbb{C}^{n \times n}$ . Find all the analytic function  $\Phi$  from  $\mathbb{D}$  to  $\mathbb{C}^{n \times n}$  satisfies

$$\Phi(\alpha_i) = W_i, \ \forall i = 1, ..., n$$

and

$$\|\Phi\|_{\infty} \le 1, \ \forall \alpha \in \mathbb{D}$$

We write down the Spectral-Nevanlinna-Pick interpolation problem as following:

Let  $\alpha_1, ..., \alpha_n \in \mathbb{D}$ ,  $W_i \in \mathbb{C}^{n \times n}$ . Find all the analytic function F from  $\mathbb{D}$  to  $\mathbb{C}^{n \times n}$  satisfies

$$F(\alpha_i) = W_i, \ \forall i = 1, ..., n$$

and

$$||F||_{\mu} \le 1, \ \forall \alpha \in \mathbb{D}$$

In this thesis we consider the situation of lower bound which is the spectral Nevanlinna-Pick problem. Only n=2 case is considered and let the spectral radius with

$$||A||_s = \max\{|\lambda| : \lambda \text{ are the eigenvalues of A}\}$$

Define the spectral unit disc with

$$\Sigma = \{ A \in \mathbb{C}^{2 \times 2} : ||A||_s \le 1 \}$$

which is 4-dimensional space in  $\mathbb{C}$  and obviously unbounded, and non-convex, non-smooth set. For example:

Example 2 Let

$$A_1 = \left[ egin{array}{cc} rac{1}{2} & 2 \ 0 & rac{1}{2} \end{array} 
ight], \ A_2 = \left[ egin{array}{cc} rac{1}{2} & 0 \ 2 & rac{1}{2} \end{array} 
ight]$$

$$A_3 \triangleq \frac{1}{2}A_1 + (1 - \frac{1}{2})A_2 = \begin{bmatrix} \frac{1}{2} & 1\\ 1 & \frac{1}{2} \end{bmatrix}$$

 $||A_3||_s = \frac{3}{2} > 1$  thus  $A_3 \notin \Sigma$ , and  $\Sigma$  is not convex.

To study the interpolation problem in  $\Sigma$  is quite difficult. Suppose  $A \in \mathbb{C}^{2\times 2}$  is similar to a companian matrix  $A_c$ :

$$A_c = \left[ \begin{array}{cc} 0 & 1 \\ -p & s \end{array} \right]$$

with characteristic polynomial:

$$\det(\lambda I - A_c) = \lambda^2 - s\lambda + p$$

Define a set as following:

**Definition 1.1** Define the symmetrized bidisc with

$$\Gamma = \{ (s, p) : \lambda^2 - s\lambda + p = 0, \ |\lambda| \le 1, \ \lambda \in \mathbb{C} \}$$

Where s and p are the sum and product of the roots of following equation

$$\lambda^2 - s\lambda + p = 0, \ |\lambda| \le 1, \ \lambda \in \mathbb{C}$$

We can take (s, p) to be the coordinate of  $\Gamma$ . In other words, we can rewrite the symmetrized bidisc with

$$\Gamma = \{(\lambda_1 + \lambda_2, \lambda_1 \lambda_2) : |\lambda_i| \le 1, \ \lambda_i \in \mathbb{C}, \ i = 1, 2\}$$

In fact s and p are the trace and determinant of  $A_c$  respectively. Thus  $\Gamma$  is in the form:

$$\Gamma = \{(tr(A_c), det(A_c)) : A_c \text{ is the companion matrix of A, A} \in \Sigma\}$$

Here  $\Gamma$  is in  $\mathbb{C}^2$  which is a 2-dimensional space in  $\mathbb{C}$ .  $\Gamma$  is non-convex but bounded and compact set. Clearly some of the characteristics of  $\Gamma$  are better than  $\Sigma$ . The following two theorems show that we can study interpolation in  $\Gamma$  instead of  $\Sigma$  which was established by Agler and Young 1999.

**Theorem 1.1** [2] Let  $\alpha_1$ ,  $\alpha_2 \in \mathbb{D}$  be distinct and let  $W_1$ ,  $W_2 \in \Sigma$ . Suppose that either both or neither of  $W_1$ ,  $W_2$  are scalar matrices. The following statements are equivalent.

- (1) There exists an analytic function  $F: \mathbb{D} \to \Sigma$  such that  $F(\alpha_i) = W_i$ , i = 1, 2.
- (2) There exists an analytic function  $f : \mathbb{D} \to \Gamma$  such that  $f(\alpha_i) = (trW_i, detW_i)$ , i = 1, 2.

**Theorem 1.2** [2] Let  $\alpha_1$ ,  $\alpha_2 \in \mathbb{D}$  be distinct and let  $W_1$ ,  $W_2 \in \Sigma$  and suppose that  $W_1 = cI$  but  $W_2$  is not scalar. The following statements are equivalent.

- (1) There exists an analytic function  $F: \mathbb{D} \to \Sigma$  such that  $F(\alpha_i) = W_i$ , i = 1, 2.
- (2) There exists an analytic function  $f: \mathbb{D} \to \Gamma$  such that  $f(\alpha_i) = (trW_i, detW_i)$ , i = 1, 2 and  $f'_2(\alpha_1) = cf'_1(\alpha_1)$ .

We write down the general spectral Nevanlinna-Pick interpolation problem as:

Given  $\alpha_1, \ \alpha_2 \in \mathbb{D}$ , and  $(s_1, p_1), \ (s_2, p_2) \in \Gamma$ , find an analytic function  $\varphi : \mathbb{D} \to \Gamma$  with  $\varphi(\lambda) = (s(\lambda), p(\lambda))$  satisfies

$$\varphi(\alpha_1) = (s_1, p_1), \ \varphi(\alpha_2) = (s_2, p_2).$$

In this thesis, we consider the following special flat problem:

**Problem 1.1** Given  $\alpha_2 \in \mathbb{D}$ ,  $\alpha_2 \neq 0$  and  $(s_2, p_2) \in \Gamma$ , find an analytic function

$$\varphi: \mathbb{D} \to \Gamma \text{ with } \varphi(\lambda) = (s(\lambda), p(\lambda)) \text{ satisfies}$$

$$\varphi(0) = (0,0), \ \varphi(\alpha_2) = (s_2, p_2).$$

### 2 Mathematical Preliminaries

In this chapter we summarize some mathematical definitions and results which will be used in these thesis.

Denote  $\mathbb C$  to be the complex space, and  $\mathbb D$ ,  $\overline{\mathbb D}$ ,  $\mathbb T$  to be the unit disc, closed unit disc and unit circle, respectively. Consider the mapping  $F: \mathbb D \to \mathbb D$  with

$$F_w(z) = \frac{z - w}{1 - \bar{w}z}$$
, where  $w \in \mathbb{D}$ 

which is called Möbius transformation.

**Definition 2.1** For  $w, z \in \mathbb{D}$ , define the *Poincaré distance* with

$$d(z,w) = \left| \frac{z - w}{1 - \bar{w}z} \right|$$

**Definition 2.2** f is an analytic function in a domain  $\Omega$  if it has a derivative at every point in  $\Omega$ .

**Theorem 2.1** [5] (Schwarz-Pick Lemma) Suppose  $f: \overline{\mathbb{D}} \to \overline{\mathbb{D}}$  is an analytic function, then

- $(1) \qquad \left| \frac{f(z) f(w)}{1 f(z) \overline{f(w)}} \right| \le \left| \frac{z w}{1 z\overline{w}} \right| \qquad \forall z, \ w \in \overline{\mathbb{D}}$
- $(2) \qquad \frac{|f'(z)|}{1 |f(z)|^2} \le \frac{1}{1 |z|^2} \qquad \forall z \in \overline{\mathbb{D}}$

If the equality holds then f must be a conformal mapping.

If f is an analytic function from  $\overline{\mathbb{D}}$  to  $\overline{\mathbb{D}}$  then the Schwarz-Pick lemma shows that

$$d(f(z), f(w)) \le d(z, w), \ \forall z, \ w \in \overline{\mathbb{D}}$$

**Definition 2.3** Let  $\Omega$  be an arbitrary set in  $\mathbb{C}^n$  and taking all analytic function Q from  $\mathbb{D}$  to  $\Omega$ . Define the *Kobayashi distance* between Q(z) and Q(w) in  $\Omega$  with

$$K_{\Omega}(Q(z), Q(w)) = \inf_{Q} d(z, w), \forall z, w \in \mathbb{D}$$

if the equility holds, Q is called Kobayashi extremal function (K-extremal function).

**Definition 2.4** Let  $\Omega$  be a domain in  $\mathbb{C}^n$  and taking all analytic function F from  $\Omega$  to  $\mathbb{D}$ . Define the *Carathéodory distance* between u and v in  $\Omega$  with

$$C_{\Omega}(u,v) = \sup_{F} d(F(u), F(v)), \ \forall u, \ v \in \Omega$$

if the equility holds, F is called Carathéodory extremal function (C-extremal function).

By the Schwarz-Pick lemma, for any domain  $\Omega$  in  $\mathbb{C}^n$  we have [7]

$$C_{\Omega} \leq K_{\Omega}$$

By Lempert theorem [5] if  $\Omega$  is convex then the equality hold.

**Theorem 2.2** [8] (Maximum Modulus Theorem) If f is defined and continuous on a closed-bounded set S and analytic on the interior of S, then the maximum of |f(s)| on S is attained on the boundary of S, i.e.

$$\max_{s \in S} |f(s)| = \max_{s \in \partial S} |f(s)|$$

where  $\partial S$  denotes the boundary of S.

We use diag[ $\lambda_1, ..., \lambda_n$ ] to denote the diagonal matrix with entries  $\lambda_1, ..., \lambda_n$ .

**Theorem 2.3** [4] Let h be a analytic bounded-valued function on  $\mathbb{D}^2$  and  $|h(\lambda_1, \lambda_2)| \leq 1$ , for all  $(\lambda_1, \lambda_2) \in \mathbb{D}^2$  if and only if there exists an unitary matrix

$$\mathcal{R}_h = \left[ egin{array}{cc} A & B \ C & D \end{array} 
ight]$$

such that

$$h(\lambda_1, \lambda_2) = C \operatorname{diag}[\lambda_1, \lambda_1, \lambda_2](I_3 - A \operatorname{diag}[\lambda_1, \lambda_1, \lambda_2])^{-1}B + D$$

for all  $(\lambda_1, \lambda_2) \in \mathbb{D}^2$ .

### 3 Main Results

In this chapter we discuss the properties of  $\Gamma$ , the ideal to construct  $\varphi$ , and given a explicit 2D realization.

#### 3.1 Properties of $\Gamma$

In this section we are interesting the geometric properties about  $\Gamma$ . First we are concerned what kinds of s and p in  $\Gamma$ .

**Theorem 3.1** The following statements are equivalent:

- (1)  $(s,p) \in \Gamma$
- (2)  $|s \bar{s}p| \le 1 |p|^2$  and  $|s| \le 2$

(3) 
$$2|s - \bar{s}p| + |s^2 - 4p| \le 4 - |s|^2$$
,  $|p| \le 1$ 

**Proof**. Write  $s = \lambda_1 + \lambda_2$ ,  $p = \lambda_1 \lambda_2$  and taking the polar form with

$$\lambda_1 = r_1 e^{i\theta_1}, \ \lambda_2 = r_2 e^{i\theta_2}, \ \ s = r_1 e^{i\theta_1} + r_2 e^{i\theta_2}, \ \ p = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

$$0 \le r_1 \le 1, \ 0 \le r_2 \le 1.$$

For  $(1) \Rightarrow (2)$ .

Consider

$$|s - \bar{s}p| - (1 - |p|^2) = |r_1 e^{i\theta_1} + r_2 e^{i\theta_2} - (r_1 e^{-i\theta_1} + r_2 e^{-i\theta_2}) r_1 r_2 e^{i(\theta_1 + \theta_2)}| - (1 - r_1^2 r_2^2)$$

$$= |r_1 e^{i\theta_1} (1 - r_2^2) + r_2 e^{i\theta_2} (1 - r_1^2)| - (1 - r_1^2 r_2^2)$$

$$\leq |r_1 e^{i\theta_1} (1 - r_2^2)| + |r_2 e^{i\theta_2} (1 - r_1^2)| - (1 - r_1^2 r_2^2)$$

$$= r_1(1 - r_2^2) + r_2(1 - r_1^2) - (1 - r_1^2 r_2^2)$$

$$= (1 - r_1 r_2)[r_1 + r_2 - (1 + r_1 r_2)]$$

$$\leq 0$$

Since

$$(1+r_1r_2)^2 - (r_1+r_2)^2 = (1-r_1^2)(1-r_2^2) \ge 0$$

which implies that  $r_1 + r_2 - (1 + r_1 r_2) \le 0$ .

For (2) 
$$\Rightarrow$$
 (1). By  $0 \le |s - \bar{s}p| \le 1 - |p|^2 = (1 - r_1^2 r_2^2)$  we have  $r_1 r_2 \le 1$ .

Suppose  $r_1 \ge 1$  then  $r_2 \le \frac{1}{r_1} < 1$ 

$$0 \geq |s - \bar{s}p| - (1 - |p|^2)$$

$$= |r_1e^{i\theta_1} + r_2e^{i\theta_2} - (r_1e^{-i\theta_1} + r_2e^{-i\theta_2})r_1r_2e^{i(\theta_1 + \theta_2)}| - (1 - r_1^2r_2^2)$$

$$= |r_1e^{i\theta_1}(1 - r_2^2) + r_2e^{i\theta_2}(1 - r_1^2)| - (1 - r_1^2r_2^2)$$

$$\geq |r_1e^{i\theta_1}(1 - r_2^2)| - |(-1)r_2e^{i\theta_2}(1 - r_1^2)| - (1 - r_1^2r_2^2)$$

$$= |r_1e^{i\theta_1}(1 - r_2^2)| + |r_2e^{i(\theta_2 + \pi)}(1 - r_1^2)| - (1 - r_1^2r_2^2)$$

$$= |r_1(1 - r_2^2)| - |r_2(1 - r_1^2)| - (1 - r_1^2r_2^2)$$

$$= r_1(1 - r_2^2) - r_2(1 - r_1^2) - (1 - r_1^2r_2^2)$$

$$= (1 - r_1r_2)(r_1 + r_2 - 1 - r_2r_2)$$

$$= (1 - r_1r_2)(1 - r_2)(r_1 - 1)$$

But  $1 - r_1 r_2 \ge 0$ ,  $r_1 - 1 > 0$ ,  $1 - r_2 > 0$  which is contradiction to  $0 \ge |s - \bar{s}p| - (1 - |p|^2)$ . Hence  $r_1 \le 1$ . Similarly,  $r_2 \le 1$ . Thus  $(s, p) \in \Gamma$ . For  $(1) \Rightarrow (3)$ . Consider

$$\begin{split} 2|s-\bar{s}p|+|s^2-4p|-(4-|s|^2) &= 2|r_1e^{i\theta_1}+r_2e^{i\theta_2}-(r_1e^{-i\theta_1}+r_2e^{-i\theta_2})(r_1r_2e^{i(\theta_1+\theta_2)})|\\ &+|(r_1e^{i\theta_1}+r_2e^{i\theta_2})^2-4r_1r_2e^{i(\theta_1+\theta_2)}|\\ &+|r_1e^{i\theta_1}+r_2e^{i\theta_2}|^2-4\\ &\leq 2|r_1e^{i\theta_1}(1-r_2^2)|+2|r_2e^{i\theta_2}(1-r_1^2)|+|r_1e^{i\theta_1}-r_2e^{i\theta_2}|^2\\ &+|r_1e^{i\theta_1}+r_2e^{i\theta_2}|^2-4\\ &= 2r_1(1-r_2^2)+2r_2(1-r_1^2)+2r_1^2+2r_2^2-4\\ &= -2(1-r_1)(1-r_2)(r_1+r_2+2)\\ &\leq 0 \end{split}$$

For (3)  $\Rightarrow$  (1). Suppose  $r_1 > 1$  and by  $|p| \le 1$  we have  $r_2 \le \frac{1}{r_1} < 1$ .

$$2|s - \bar{s}p| + |s^2 - 4p| - (4 - |s|^2) = 2|r_1e^{i\theta_1} + r_2e^{i\theta_2} - (r_1e^{-i\theta_1} + r_2e^{-i\theta_2})(r_1r_2e^{i(\theta_1 + \theta_2)})|$$

$$+ |(r_1e^{i\theta_1} + r_2e^{i\theta_2})^2 - 4r_1r_2e^{i(\theta_1 + \theta_2)}|$$

$$+ |r_1e^{i\theta_1} + r_2e^{i\theta_2}|^2 - 4$$

$$= 2|r_1e^{i\theta_1}(1-r_2^2) + r_2e^{i\theta_2}(1-r_1^2)| + |r_1e^{i\theta_1} - r_2e^{i\theta_2}|^2$$

$$+|r_1e^{i\theta_1} + r_2e^{i\theta_2}|^2 - 4$$

$$\geq 2|r_1(1-r_2^2)| - 2|r_2(1-r_1^2)| + 2r_1^2 + 2r_2^2 - 4$$

$$= 2r_1(1-r_2^2) - 2r_2(r_1^2-1) + 2r_1^2 + 2r_2^2 - 4$$

$$= -2(r_1-1)(r_2-1)(r_1+r_2+2)$$

$$\geq 0$$

which contradiction to  $2|s-\bar{s}p|+|s^2-4p|-(4-|s|^2)\leq 0$ . Thus  $r_1\leq 1$ . Similarly  $r_2\leq 1$ . Hence  $(s,p)\in\Gamma$  and we complete the proof.

Define the interior symmetrized bidisc with

$$int(\Gamma) = \{(\lambda_1 + \lambda_2, \lambda_1 \lambda_2) : \lambda_i \in \mathbb{C}, |\lambda_i| < 1\}$$

then  $(s, p) \in int(\Gamma)$  if and only if  $|s - \bar{s}p| < 1 - |p|^2$ .

The following lemma shows that for all line-segments connected (0,0) and any other points in  $\Gamma$  are still lies in  $\Gamma$ . Also we can say that there are no holes in  $\Gamma$ .

**Lemma 3.1** If  $(s, p) \in \Gamma$ , then for any 0 < t < 1,  $(ts, tp) \in \Gamma$ 

**Proof.** Since  $(s,p) \in \Gamma$ . Write  $s = \lambda_1 + \lambda_2$ ,  $p = \lambda_1 \lambda_2$  and taking the polar form with  $\lambda_1 = r_1 e^{i\theta_1}$ ,  $\lambda_2 = r_2 e^{i\theta_2}$ ,  $0 \le r_1 \le 1$ ,  $0 \le r_2 \le 1$ 

and 
$$s = \lambda_1 + \lambda_2 = r_1 e^{i\theta_1} + r_2 e^{i\theta_2}$$
,  $p = \lambda_1 \lambda_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$ .  
Claim  $(ts, tp)$  satisfy  $|ts - t^2 \overline{s}p| \le 1 - t^2 |p|^2$ . Consider

$$|ts - t^{2}\overline{s}p| = t |r_{1}e^{i\theta_{1}} + r_{2}e^{i\theta_{2}} - t(r_{1}e^{-i\theta_{1}} + r_{2}e^{-i\theta_{2}})r_{1}r_{2}e^{i(\theta_{1} + \theta_{2})}|$$

$$= t |r_{1}e^{i\theta_{1}} + r_{2}e^{i\theta_{2}} - tr_{1}^{2}r_{2}e^{i\theta_{2}} - tr_{1}r_{2}^{2}e^{i\theta_{1}}|$$

$$= t |r_{1}e^{i\theta_{1}}(1 - tr_{2}^{2}) + r_{2}e^{i\theta_{2}}(1 - tr_{1}^{2})|$$

$$\leq t |r_{1}e^{i\theta_{1}}(1 - tr_{2}^{2})| + t |r_{2}e^{i\theta_{2}}(1 - tr_{1}^{2})|$$

$$= tr_{1}(1 - tr_{2}^{2}) + tr_{2}(1 - tr_{1}^{2})$$

$$= tr_{1} - t^{2}r_{1}r_{2}^{2} + tr_{2} - t^{2}r_{1}^{2}r_{2}$$

$$= t(r_{1} + r_{2})(1 - tr_{1}r_{2})$$

Hence

$$|ts - t^{2}\overline{s}p| - (1 - t^{2}|p|^{2}) \leq t(r_{1} + r_{2})(1 - tr_{1}r_{2}) - (1 - t^{2}|p|^{2})$$

$$= t(r_{1} + r_{2})(1 - tr_{1}r_{2}) - (1 - t^{2}r_{1}^{2}r_{2}^{2})$$

$$= (1 - tr_{1}r_{2})(tr_{1} + tr_{2} - (1 + tr_{1}r_{2}))$$

Now  $(1 - tr_1 r_2) \ge 0$ , we claim  $tr_1 + tr_2 - (1 + tr_1 r_2) \le 0$ .

Consider

$$(t(r_1+r_2))^2 - (1+tr_1r_2)^2 = t^2(r_1^2 + 2r_1r_2 + r_2^2) - 1 - 2tr_1r_2 - t^2r_1^2r_2^2$$

$$= t^2r_1^2 + t^2r_2^2 - 1 - t^2r_1^2r_2^2 + 2tr_1r_2(t-1)$$

$$< tr_1^2 + tr_2^2 - 1 - t^2r_1^2r_2^2 + 2tr_1r_2(t-1)$$

$$= -(1-tr_1^2)(1-tr_2^2) + 2tr_1r_2(t-1)$$

$$< 0$$

Thus 
$$t(r_1 + r_2) - (1 + tr_1 r_2) < 0$$
.

And 
$$|ts - t^2 \overline{s}p| - (1 - t^2 |p|^2) \le (1 - tr_1 r_2)(tr_1 + tr_2 - (1 + tr_1 r_2)) < 0.$$

Hence 
$$(ts, tp) \in \Gamma$$
.

#### 3.2 Ideal to Construct $\varphi$

Define the function  $G_w$  from  $int(\Gamma)$  to  $\mathbb{D}$  with[1]:

$$G_w(s,p) = \frac{2p - ws}{2 - \bar{w}s}, \ w \in \overline{\mathbb{D}}$$

is an analytic function. And we have the following result:

**Theorem 3.2** Let  $(s_2, p_2) \in int(\Gamma)$  then

$$C_{int(\Gamma)}((0,0),(s_2,p_2)) = \sup_{|w|=1} |\frac{2p_2 - ws_2}{2 - \bar{w}s_2}|$$

**Proof.** By the definition and maximum modulus theorem, we have

$$C_{int(\Gamma)}((0,0),(s_2,p_2)) = \sup_{|w| \le 1} \left| \frac{\frac{2p_2 - ws_2}{2 - \bar{w}s_2} - 0}{1 - \frac{2p_2 - ws_2}{2 - \bar{w}s_2} 0} \right| = \sup_{|w| \le 1} \left| \frac{2p_2 - ws_2}{2 - \bar{w}s_2} \right| = \sup_{|w| = 1} \left| \frac{2p_2 - ws_2}{2 - \bar{w}s_2} \right|$$

From Theorem 3.2, if the equality holds at  $|w_0| = 1$ , i.e.

$$C_{int(\Gamma)}((0,0),(s_2,p_2)) = d(G_{w_0}(0,0),G_{w_0}(s_2,p_2)) = |\frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}|$$

then  $G_{w_0}$  is a C-extremal function.

**Definition 3.1** If  $C_{int(\Gamma)} = K_{int(\Gamma)}$ , Define  $\varphi$  is a K-extremal function from  $\mathbb{D}$  to  $\Gamma$ .

Now we have the problem: How to construct  $\varphi$ ?

Let

$$\beta_2 \triangleq G_w(s_2, p_2) = \frac{2p_2 - ws_2}{2 - \bar{w}s_2}.$$

Clearly  $|\beta_2| \leq 1$ . By the K-extremal property of  $\varphi$  we have

$$G_w \circ \varphi(\alpha_2) = \beta_2.$$

Since  $\varphi$  and  $G_w$  are analytic functions, so we have  $G_w \circ \varphi$  is also an analytic function from  $\mathbb{D}$  to  $\mathbb{D}$ .

From the Nevanlinna-Pick theorem we have the sufficient and necessary condition for the existence of an analytic function  $G_w \circ \varphi$  satisfies  $G_w \circ \varphi(0) = 0$ ,  $G_w \circ \varphi(\alpha_2) = \beta_2$  which required the Pick matrix

$$\begin{bmatrix} 1 & 1 \\ 1 & \frac{1-|\beta_2|^2}{1-|\alpha_2|^2} \end{bmatrix} \ge 0$$

is positive semi-define.

Now, we are concerned the sufficient and necessary conditions of  $\varphi$ . The following necessary condition was established by Agler and Young 1999.

**Theorem 3.3** [3] Let  $\alpha_2 \in \mathbb{D}$  and  $(s_2, p_2) \in int(\Gamma)$ , if there exist an analytic function  $\varphi : \mathbb{D} \to int(\Gamma)$  satisfies  $\varphi(0) = (0, 0), \ \varphi(\alpha_2) = (s_2, p_2).$ 

Then

$$\begin{vmatrix}
2 & 2 - ws_2 \\
2 - \bar{w}\bar{s}_2 & \frac{2(1 - \bar{p}_2 p_2) - \bar{w}(\bar{s}_2 - \bar{p}_2 s_2) - w(s_2 - \bar{s}_2 p_2)}{1 - \bar{\alpha}_2 \alpha_2}
\end{vmatrix} \ge 0$$

To construct the sufficient condition of  $\varphi$  we consider the following theorem:

**Theorem 3.4** Let  $C_{int(\Gamma)}((0,0), (s_2,p_2)) = K_{int(\Gamma)}((0,0), (s_2,p_2))$  where Cextremal function and K-extremal function are  $G_{w_0}: int(\Gamma) \to \mathbb{D}$  and  $\varphi: \mathbb{D} \to \Gamma$ , then  $G_{w_0} \circ \varphi: \mathbb{D} \to \mathbb{D}$  is analytic and

- (1)  $G_{w_0} \circ \varphi = id_{\mathbb{D}}$  (up to Möbius transformation).
- (2)  $\varphi$  is isometric transformation from  $(\mathbb{D}, d)$  to  $(\varphi(\mathbb{D}), C_{int(\Gamma)})$ . where  $(\varphi(\mathbb{D}), C_{int(\Gamma)})$  is called totally geodesic disc of  $int(\Gamma)$ .

**Proof.** Since  $G_{w_0}$  is a C-extremal function,  $\varphi$  is a K-extremal function. Clearly  $G_{w_0} \circ \varphi$  is an analytic function from  $\mathbb{D}$  to  $\mathbb{D}$ . Suppose  $\varphi(0) = (0,0)$ ,  $\varphi(\alpha_2) = (s_2, p_2)$  then

$$|\alpha_2| = d(0, \alpha_2) = K_{int(\Gamma)}(\varphi(0), \varphi(\alpha_2)) = K_{int(\Gamma)}((0, 0), (s_2, p_2)) = C_{int(\Gamma)}((0, 0), (s_2, p_2)) = d(G_{w_0}(0, 0), G_{w_0}(s_2, p_2)) = d(0, \beta_2) = |\beta_2|$$

Hence  $G_{w_0} \circ \varphi$  is an isometric transformation from  $(\mathbb{D}, d)$  to  $(\varphi(\mathbb{D}), C_{int(\Gamma)})$ .

Also 
$$G_{w_0} \circ \varphi = id_{\mathbb{D}}$$
.

We consider the situation of  $G_{w_0} \circ \varphi(\lambda) = \lambda$ . Let M be a Möbius transformation such that  $M(\beta_2) = \alpha_2$  then

$$M \circ G_{w_0} \circ \varphi(\alpha_2) = M(\beta_2) = \alpha_2$$

then  $M \circ G_{w_0} \circ \varphi$  is an identity function, without lose any generality. Let M = I then  $\alpha_2 = \beta_2$ . In other words, let  $\varphi(\lambda) = (s(\lambda), p(\lambda))$  so we have

$$G_{w_0}(s(\lambda), p(\lambda)) = \frac{2p(\lambda) - w_0 s(\lambda)}{2 - \bar{w}_0 s(\lambda)} = \lambda$$

and

$$s(\lambda) = 2 \frac{p(\lambda) - \lambda}{w_0 - \bar{w}_0 \lambda}$$

where  $s(\cdot)$  must be analytic, so  $p(\cdot)$  have to satisfies  $p(w_0^2) = w_0^2$ ,  $p(\cdot)$  is analytic,  $p(\alpha_2) = p_2$ , p(0) = 0 and  $|p(\lambda)| \le 1$ ,  $\forall \lambda \in \mathbb{D}$ .

If  $K_{int(\Gamma)} = C_{int(\Gamma)}$  by

$$\beta_1 = 0, \ \beta_2 = \frac{2p_2 - ws_2}{2 - \bar{w}s_2}, d(0, \beta_2) = |\beta_2| = |\frac{2p_2 - ws_2}{2 - \bar{w}s_2}|$$

and by theorem 3.2

$$C_{int(\Gamma)}((0,0),(s_2,p_2)) = \sup_{|w|=1} |\frac{2p_2 - ws_2}{2 - \bar{w}s_2}|.$$

If there exists  $w_0 \in \mathbb{T}$  such that

$$|\frac{2p_2-w_0s_2}{2-\bar{w}_0s_2}|=\sup_{|w|=1}|\frac{2p_2-ws_2}{2-\bar{w}s_2}|$$

**Lemma 3.2** Let  $w_0 \in \mathbb{T}$  and satisfies

$$\left|\frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}\right| = \sup_{|w|=1} \left|\frac{2p_2 - w s_2}{2 - \bar{w} s_2}\right|$$

then

$$\left|\frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}\right| = \frac{|4p_2 - s_2^2| + 2|s_2 - \bar{s}_2 p_2|}{4 - |s_2|^2}$$

**Proof**. Claim

$$\left|\frac{2p_2 - ws_2}{2 - w\bar{s}_2} - \frac{4p_2 - s_2^2}{4 - |s_2|^2}\right| \le \frac{2|s_2 - \bar{s}_2 p_2|}{4 - |s_2|^2}$$

and

$$\frac{2|s_2 - \bar{s_2}p_2|}{4 - |s_2|^2} - |\frac{2p_2 - ws_2}{2 - w\bar{s_2}} - \frac{4p_2 - s_2^2}{4 - |s_2|^2}| = \frac{2|s_2 - \bar{s_2}p_2|}{4 - |s_2|^2} - 2|\frac{(2w - s_2)(p_2\bar{s_2} - s_2)}{(2 - w\bar{s_2})(4 - |s_2|^2)}|$$

$$= o, \forall w \in \mathbb{T}$$

We have

$$\left|\frac{2p_2 - ws_2}{2 - w\bar{s}_2}\right| - \left|\frac{4p_2 - s_2^2}{4 - |s_2|^2}\right| \le \left|\frac{2p_2 - ws_2}{2 - w\bar{s}_2} - \frac{4p_2 - s_2^2}{4 - |s_2|^2}\right| = \frac{2|s_2 - \bar{s}_2 p_2|}{4 - |s_2|^2}$$

Hence

$$\left|\frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}\right| = \sup_{|w|=1} \left|\frac{2p_2 - w s_2}{2 - \bar{w} s_2}\right| = \frac{|4p_2 - s_2^2| + 2|s_2 - \bar{s}_2 p_2|}{4 - |s_2|^2}.$$

From the lemma 3.2 and theorem 3.4 we have the following identity:

$$\left|\frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}\right| = |\beta_2| = \frac{|4p_2 - s_2^2| + 2|s_2 - \bar{s}_2 p_2|}{4 - |s_2|^2}$$

#### 3.3 Realization of Symmetrized Bidisc $\Gamma$

In this section we characterize an analytic function  $\varphi$  and give a realization of  $\varphi$ .

**Theorem 3.5** Let  $\alpha_2 \in \mathbb{D}$ ,  $(s_2, p_2) \in int(\Gamma)$ ,  $\alpha_2 \neq 0$ , and if there exists  $w_0 \in \mathbb{T}$  satisfies the following

$$\left|\frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}\right| = |\alpha_2| = \frac{|4p_2 - s_2^2| + 2|s_2 - \bar{s}_2 p_2|}{4 - |s_2|^2}.$$

Then there exists an analytic function  $\varphi : \mathbb{D} \to \Gamma$  such that

$$\varphi(0) = (0,0)$$

$$\varphi(\alpha_2) = (s_2, p_2)$$

where  $\varphi(\lambda) = (s(\lambda), p(\lambda)).$ 

$$s(\lambda) = \frac{2\alpha\lambda}{1 - \bar{\beta}\lambda}, p(\lambda) = \frac{\gamma\lambda(\lambda - \beta)}{1 - \bar{\beta}\lambda}$$

where  $\alpha, \beta, \gamma \in \mathbb{C}$ , and  $\alpha = \frac{\bar{w}_0 k}{\bar{a}}$ ,  $k = w_0^2 \bar{b} - a \in \mathbb{R}$ ,  $\beta = -\frac{b}{a}$ ,  $\gamma = \bar{w}_0^2 \frac{a}{\bar{a}}$ with  $a = 1 - w_0^2 p_0 \bar{\alpha}_2$ ,  $b = w_0^2 p_0 - \alpha_2$ ,  $p_0 = \frac{p_2}{\alpha_2}$ ,  $a + b \bar{w}_0^2 \in \mathbb{R}$ , |k| = |a| - |b|.

**Proof.** First we consider the following identities:

(i) 
$$|\gamma| = |\bar{w}_0^2 \frac{a}{\bar{a}}| = 1.$$

(ii) 
$$\gamma \bar{\alpha} = \bar{w}_0^2 \frac{a}{\bar{a}} \frac{\bar{w}_0 k}{\bar{a}} = \frac{\bar{w}_0 k}{\bar{a}} = \alpha$$
.

(iii) 
$$|\alpha| + |\beta| = |\frac{w_0 k}{a}| + |-\frac{b}{a}| = \frac{1}{|a|}(|k| + |b|) = 1.$$

To check the interpolation.

$$p(\lambda) = \frac{\gamma \lambda(\lambda - \beta)}{1 - \bar{\beta}\lambda}$$

$$= \bar{w}_0^2 \frac{a}{\bar{a}} \frac{\lambda(\lambda + \frac{b}{a})}{1 + \frac{\bar{b}}{\bar{a}}\lambda}$$

$$= \bar{w}_0^2 \lambda \frac{a\lambda + b}{\bar{b}\lambda + \bar{a}}$$

$$= \bar{w}_0^2 \lambda \frac{(1 - w_0^2 p_0 \bar{\alpha}_2)\lambda + (w_0^2 p_0 - \alpha_2)}{(\bar{w}_0^2 \bar{p}_0 - \bar{\alpha}_2)\lambda + (1 - \bar{w}_0^2 \bar{p}_0 \alpha_2)}$$

$$= \lambda \frac{(\lambda - \alpha_2)\bar{w}_0^2 + p_0(1 - \bar{\alpha}_2\lambda)}{1 - \bar{\alpha}_2\lambda + \bar{p}_0\bar{w}_0^2(\lambda - \alpha_2)}$$

Thus

$$p(\alpha_2) = \alpha_2 p_0 = p_2$$

and

$$s(\alpha_2) = 2\frac{p(\alpha_2) - \alpha_2}{w_0 - \bar{w}_0 \alpha_2} = 2\frac{p_2 - \beta_2}{w_0 - \bar{w}_0 \beta_2} = 2\frac{p_2 - \frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}}{w_0 - \bar{w}_0 \frac{2p_2 - w_0 s_2}{2 - \bar{w}_0 s_2}} = s_2 \frac{w_0 - p_2 \bar{w}_0}{w_0 - p_2 \bar{w}_0} = s_2.$$

Since the pole of  $p(\cdot)$  is  $\frac{1}{\beta} \notin \mathbb{D}$ , and

$$p(w_0^2) = w_0^2 \frac{1 - \alpha_2 \bar{w}_0^2 + p_0 - p_0 \bar{\alpha}_2 w_0^2}{1 - \bar{\alpha}_2 w_0^2 + \bar{p}_0 - \bar{p}_0 \alpha_2 \bar{w}_0^2} = w_0^2 \frac{a + \bar{w}_0^2 b}{\bar{a} + w_0^2 \bar{b}} = w_0^2.$$

Thus  $\varphi$  is an analytic function.

To proof  $\varphi(\lambda) \in \Gamma$ . Let  $u(\lambda) = 1 - \bar{\beta}\lambda$  and  $k(\lambda) = \lambda - \beta$ . Check  $|s(\lambda)| \leq 2$ 

$$4 - |s(\lambda)|^{2} = 4 - |\frac{2\alpha\lambda}{1 - \bar{\beta}\lambda}|^{2}$$

$$= \frac{4}{|u(\lambda)|^{2}} (1 - \beta\bar{\lambda} - \bar{\beta}\lambda + |\beta|^{2}|\lambda|^{2} - |\alpha|^{2}|\lambda|^{2})$$

$$= \frac{4}{|u(\lambda)|^{2}} (1 - \beta\bar{\lambda} - \bar{\beta}\lambda + |\beta||\lambda|^{2} - |\alpha||\lambda|^{2})$$

$$= \frac{4}{|u(\lambda)|^{2}} (|\beta| - \beta\bar{\lambda} - \bar{\beta}\lambda + |\beta||\lambda|^{2} + |\alpha| - |\alpha||\lambda|^{2})$$

$$\geq \frac{4}{|u(\lambda)|^{2}} (|\beta| - 2|\beta||\lambda| + |\beta||\lambda|^{2} + |\alpha| - |\alpha||\lambda|^{2})$$

$$= \frac{4}{|u(\lambda)|^{2}} (|\beta|(1 - |\lambda|)^{2} + |\alpha|(1 - |\lambda|^{2}))$$

$$\geq 0$$

Hence  $|s(\lambda)| \leq 2$ . Check  $\varphi(\lambda) \in \Gamma$ .

$$1 - |p(\lambda)|^{2} - |s(\lambda) - \overline{s(\lambda)}p(\lambda)| = 1 - \frac{\gamma\lambda k(\lambda)}{u(\lambda)} \frac{\overline{\gamma\lambda k(\lambda)}}{\overline{u(\lambda)}} - |\frac{2\alpha\lambda}{1 - \bar{\beta}\lambda} - \frac{\overline{2\alpha\lambda}}{\overline{u(\lambda)}} \frac{\gamma\lambda k(\lambda)}{u(\lambda)}|$$

$$= \frac{1}{|u(\lambda)|^{2}} \{|u(\lambda)|^{2} - |\gamma\lambda k(\lambda)|^{2} - 2|\alpha||\overline{u(\lambda)}\lambda - k(\lambda)|\lambda|^{2}|\}$$

$$= \frac{1}{|u(\lambda)|^{2}} \{(1 - |\lambda|^{2})(1 - \beta\bar{\lambda} - \bar{\beta}\lambda + |\lambda|^{2}) - 2|\alpha||\lambda|(1 - |\lambda|^{2})\}$$

$$= \frac{1}{|u(\lambda)|^{2}} (1 - |\lambda|^{2})(1 - \beta\bar{\lambda} - \bar{\beta}\lambda + |\lambda|^{2} - 2|\alpha||\lambda|)$$

$$= \frac{1}{|u(\lambda)|^{2}} (1 - |\lambda|^{2})(1 - \beta\bar{\lambda} - \bar{\beta}\lambda + |\lambda|^{2} - 2|\lambda| + 2|\beta||\lambda|)$$

$$= \frac{1}{|u(\lambda)|^{2}} (1 - |\lambda|^{2})(1 - |\lambda|)^{2} (2|\beta||\lambda| - \beta\bar{\lambda} - \bar{\beta}\lambda)$$

$$\geq 0$$

Hence  $\forall \lambda \in \mathbb{D}, \varphi(\lambda) \in \Gamma$ .

We given an explicit 2D realization in the following theorem.

**Theorem 3.6** If 
$$\varphi(\lambda) = (\frac{2\alpha\lambda}{1-\overline{\beta}\lambda}, \gamma\lambda\frac{\lambda-\beta}{1-\overline{\beta}\lambda}) = (s(\lambda), p(\lambda)) \in int(\Gamma)$$
, where  $\alpha, \beta, \gamma \in \mathbb{C}$ ,  $|\alpha| + |\beta| = 1$ ,  $\gamma\overline{\alpha} = \alpha$ ,  $|\gamma| = 1$ 

Let

$$h(\lambda_1, \lambda_2) = \frac{2\lambda_2 p(\lambda_1) - s(\lambda_1)}{2 - \lambda_2 s(\lambda_1)}$$

then there exists a unitary matrix

$$\mathcal{R}_h = \left[ egin{array}{cc} A & B \ C & D \end{array} 
ight]$$

where

$$A = \begin{bmatrix} 0 & 0 & 0 \\ |\alpha\beta|^{\frac{1}{2}} & \overline{\beta} & \frac{-\alpha\beta}{|\alpha|^{\frac{1}{2}}|\beta|} \\ |\beta|^{\frac{1}{2}} & -|\alpha|^{\frac{1}{2}} \frac{\overline{\beta}}{|\beta|} & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} -\alpha & \frac{-\alpha\overline{\beta}}{|\alpha\beta|^{\frac{1}{2}}} & \frac{-\gamma\beta}{|\beta|^{\frac{1}{2}}} \end{bmatrix}, D = 0$$

such that

$$h(\lambda_1, \lambda_2) = C \operatorname{diag}[\lambda_1, \lambda_1, \lambda_2](I_3 - A \operatorname{diag}[\lambda_1, \lambda_1, \lambda_2])^{-1}B + D$$

for all  $(\lambda_1, \lambda_2) \in \mathbb{D}^2$ .

Proof.

$$h(\lambda_1, \lambda_2) = \frac{2\lambda_2 p(\lambda_1) - s(\lambda_1)}{2 - \lambda_2 s(\lambda_1)} = \frac{\lambda_1 [\gamma \lambda_2 (\lambda_1 - \beta) - \alpha]}{1 - \overline{\beta} \lambda_1 - \alpha \lambda_1 \lambda_2}$$

Let

$$m \triangleq m(\lambda_1, \lambda_2) = \overline{\beta}\lambda_1 + \alpha \lambda_1 \lambda_2, \ k \triangleq k(\lambda_1) = \lambda_1 - \beta, \ u \triangleq u(\lambda_1, \lambda_2) = 1 - m,$$
$$h \triangleq h(\lambda_1, \lambda_2)$$

Consider

$$\begin{split} &1-h(\lambda_{1},\lambda_{2})\overline{h(\lambda_{1},\lambda_{2})}\\ &=(1-|\lambda_{1}|^{2})+|\lambda_{1}|^{2}\left(1-\frac{\gamma\lambda_{2}k-\alpha}{u}\frac{\overline{\gamma\lambda_{2}k}-\overline{\alpha}}{\overline{u}}\right)\\ &=(1-|\lambda_{1}|^{2})+\frac{|\lambda_{1}|^{2}}{|u|^{2}}[u\overline{u}-(\gamma\lambda_{2}k-\alpha)(\overline{\gamma\lambda_{2}k}-\overline{\alpha})]\\ &=(1-|\lambda_{1}|^{2})+\frac{|\lambda_{1}|^{2}}{|u|^{2}}[1-m-\overline{m}+m\overline{m}-|\lambda_{2}k|^{2}+\alpha k\lambda_{2}+\overline{\alpha\lambda_{2}k}-|\alpha|^{2}] \quad (Since\ \gamma\overline{\alpha}=\alpha)\\ &=(1-|\lambda_{1}|^{2})+\frac{|\lambda_{1}|^{2}}{|u|^{2}}[(1-|\lambda_{2}|^{2})|k|^{2}-|k|^{2}+1-m-\overline{m}+m\overline{m}+\alpha k\lambda_{2}+\overline{\alpha\lambda_{2}k}-|\alpha|^{2}]\\ &=(1-|\lambda_{1}|^{2})+\frac{|\lambda_{1}|^{2}}{|u|^{2}}[(1-|\lambda_{2}|^{2})|k|^{2}-|\lambda_{1}|^{2}\left(1-|\beta|^{2}-\overline{\alpha\beta\lambda_{2}}-\alpha\beta\lambda_{2}\right)\\ &+(1-|\beta|^{2}-\overline{\alpha\beta\lambda_{2}}-\alpha\beta\lambda_{2}-|\alpha|^{2})+|\alpha\lambda_{1}\lambda_{2}|^{2}]\\ &=(1-|\lambda_{1}|^{2})+\frac{|\lambda_{1}|^{2}}{|u|^{2}}[(1-|\lambda_{1}|^{2})(|\alpha\beta|-\overline{\alpha\beta\lambda_{2}}-\alpha\beta\lambda_{2}+|\alpha\beta||\lambda_{2}|^{2})\\ &+(1-|\lambda_{2}|^{2})(|\alpha\beta|-|\alpha\lambda_{1}|^{2}-|\alpha\beta||\lambda_{1}|^{2}+|\lambda_{1}|^{2}-\beta\overline{\lambda_{1}}-\overline{\beta}\lambda_{1}+|\beta|^{2})]\\ &=(1-|\lambda_{1}|^{2})+\frac{|\lambda_{1}|^{2}}{|u|^{2}}[(1-|\lambda_{1}|^{2})|\alpha\beta|\left(1-\frac{\alpha\beta}{|\alpha\beta|}\lambda_{2}\right)\overline{\left(1-\frac{\alpha\beta}{|\alpha\beta|}\lambda_{2}\right)}\\ &+(1-|\lambda_{2}|^{2})|\beta|\left(1-\frac{\overline{\beta}}{|\beta|}\lambda_{1}\right)\overline{\left(1-\frac{\overline{\beta}}{|\beta|}\lambda_{1}\right)}] \end{split}$$

Thus

$$1 - h(\lambda_1, \lambda_2) \overline{h(\lambda_1, \lambda_2)} = (1 - |\lambda_1|^2) \left[ 1 + \frac{|\lambda_1|^2}{|u|^2} |\alpha\beta| \left( 1 - \frac{\alpha\beta}{|\alpha\beta|} \lambda_2 \right) \overline{\left( 1 - \frac{\alpha\beta}{|\alpha\beta|} \lambda_2 \right)} \right]$$

$$+ \frac{|\lambda_1|^2}{|u|^2} (1 - |\lambda_2|^2) |\beta| \left( 1 - \frac{\overline{\beta}}{|\beta|} \lambda_1 \right) \overline{\left( 1 - \frac{\overline{\beta}}{|\beta|} \lambda_1 \right)}$$

$$\geq 0$$

Hence  $|h| \leq 1$ .

Let

$$g^{1} \triangleq g^{1}(\lambda_{1}, \lambda_{2}) = \begin{bmatrix} 1 \\ \frac{\lambda_{1}}{u} |\alpha\beta|^{\frac{1}{2}} (1 - \frac{\alpha\beta}{|\alpha\beta|} \lambda_{2}) \end{bmatrix}, g^{2} \triangleq g^{2}(\lambda_{1}, \lambda_{2}) = \left[\frac{\lambda_{1}}{u} |\beta|^{\frac{1}{2}} (1 - \frac{\overline{\beta}}{|\beta|} \lambda_{1})\right]$$

Then

$$1 - h(\lambda_1, \lambda_2) \overline{h(\lambda_1, \lambda_2)} = (1 - |\lambda_1|^2) < g^1, g^1 > + (1 - |\lambda_2|^2) < g^2, g^2 >$$

$$= \langle g^1, g^1 \rangle - \langle \lambda_1 g^1, \lambda_1 g^1 \rangle + \langle g^2, g^2 \rangle - \langle \lambda_2 g^2, \lambda_2 g^2 \rangle$$

Hence

$$<\lambda_1 g^1, \lambda_1 g^1>+<\lambda_2 g^2, \lambda_2 g^2>+1=< g^1, g^1>+< g^2, g^2>+< h, h>$$

We can find

$$A = \begin{bmatrix} 0 & 0 & 0 \\ |\alpha\beta|^{\frac{1}{2}} & \overline{\beta} & \frac{-\alpha\beta}{|\alpha|^{\frac{1}{2}}|\beta|} \\ |\beta|^{\frac{1}{2}} & -|\alpha|^{\frac{1}{2}} \frac{\overline{\beta}}{|\beta|} & 0 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} -\alpha & \frac{-\alpha\overline{\beta}}{|\alpha\beta|^{\frac{1}{2}}} & \frac{-\gamma\beta}{|\beta|^{\frac{1}{2}}} \end{bmatrix}, D = 0$$

such that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{vmatrix} \lambda_1 g^1 \\ \lambda_2 g^2 \\ 1 \end{vmatrix} = \begin{vmatrix} g^1 \\ g^2 \\ h \end{vmatrix}$$

And

$$A \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} g^1 \\ g^2 \end{bmatrix} + B = \begin{bmatrix} g^1 \\ g^2 \end{bmatrix}$$

Thus

$$\begin{bmatrix} g^1 \\ g^2 \end{bmatrix} = \begin{pmatrix} I_3 - A & \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}^{-1} B$$

$$h = C \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} g^1 \\ g^2 \end{bmatrix} + D$$

$$= C \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix} \begin{pmatrix} I_3 - A \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix} \end{pmatrix}^{-1} B$$

= 
$$C \operatorname{diag}[\lambda_1, \lambda_1, \lambda_2](I_3 - A \operatorname{diag}[\lambda_1, \lambda_1, \lambda_2])^{-1}B + D$$

for all  $(\lambda_1, \lambda_2) \in \mathbb{D}^2$ .

## 4 Concluding Remarks

In this thesis we discuss the Schwarz lemma on symmetrized bidisc under the condition  $C_{int(\Gamma)}((0,0),(s_2,p_2)) = K_{int(\Gamma)}((0,0),(s_2,p_2))$ . We given an analytic function  $\varphi$  and find a realization in the special flat Nevanlinna-Pick problem.

In the future, there are some natural questions suggested by the present results.

- 1. How to solve and realize the general spectral Nevanlinna-Pick interpolation problem?
- 2. Does the existence of  $\varphi$  depend sufficiently on the equality of Carathéodory and Kobayashi distances?
- 3. How to use the above results and problems to design the spectral controller for uncertain system?

## ${\bf Appendix} \qquad {\bf Geometric\ Layout\ of\ } \Gamma$

The following two figures are the special case of  $\Gamma$ . We can see that they are non-convex, non-smooth but bounded.

.

### References

- J. Agler and N.J. Young, A Schwarz lemma for the symmetrized bidisc,
   Bull. London Math. Soc. 33, 2001,175–186.
- [2] J. Agler and N.J. Young, The two-point spectral Nevalinna-Pick problem, Integral Equations Operator Theory 37, 2000, 375–385.
- [3] J. Agler and N.J. Young, A commutant lifting theorem for a domain in C<sup>2</sup> and spectral interpolation, Journal of Functional Analysis 161 1999, 452-477.
- [4] J. Agler, On the Representation of Certain Holomophic Functions Deffined on a Polydisc, Operator Theory: Advances and Applications, Vol. 48, pp. 47-66 1990.
- [5] S. Dineen, The Schwarz Lemma, Oxford University Press, Oxford, 1989.
- [6] J.C. Doyle, J.wall and G. Stein, Performance and robustness analysis for structured uncertainty, in *Proc. of the 21st IEEE Conf. Decision Contr.*, pp. 629-636, 1982.
- [7] S.G. Krantz, Complex Analysis: The Geometric Viewpoint, Washington University in St. Louis, 1990.

[8] K. Zhou, J.C. Doyle, and K. Glover, *Robust and Optimal Control*, Prentice-Hall, New Jersey 1996.