Abstract

Let I denote the set of symmetrized bidisc. In this thesis we discuss the
Schwarz lemma on I' also known as the special flat problem on I' as:
Given ay € D, as # 0 and (s9,p2) € T, find an analytic function ¢ : D —

' with o(\) = (s(\),p()\)) satisfies

©(0) = (0,0), p(az) = (s2,p2)

Based on the equality of Carathéodory and Kobayashi distances, and the

Schur’s theorem, we construct an analytic function ¢ to solve this problem.

Keywords: Spectral Nevanlinna-Pick interpolation, Poincaré distance,
Carathéodory distance, Kobayashi distance, Symmetrized bidisc, Schwarz

lemma.
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1 Introduction

1.1 Notations

Symbol Meaning

R The real value

C The complex value

D The set of {\:|A] <1}

D The set of {\: |\ <1}

T The unit circle

a(A) The maximun singular value of A

p(A), [ - |Is The value of max{|\|: A are the eigenvalues of A}

r The set of {(s,p): N2 —sA+p=0, AeC, [N\ <1}
int(T) The set of {(s,p) : N2 —sA+p=0, AeC, |\ <1}
T(M,A) The transfer function of the closed loop system M and A
A, The companion matrix of A

crxn The n x n matrices with complex elements

| oo The infinity norm

-1l The pp—norm

002 The boundary in arbitrary set €2

Cal(s,p) The Carathéodory distance between two points s and p in arbitrary set €2



Kq(s,p) The Kobayashi distance between two points s and p in arbitrary set 2
d(s,p) The Poincaré distance between two points s and p in D

diag[A1, ..., \y]  The diagonal matrix with entries A;, ..., A,



1.2 Motivation

There are two kinds of uncertainties in control systems, structured uncer-
tainty and unstructured uncertainty. H°°-control theory solves the unstruc-
tured uncertainty systems by using the classical Nevanlinna-Pick interpolation
theory. In robust H-controller design problem, we consider the following

configuration:

Figure 1: Control configuration for uncertain systems.

Figure 2: M denote the closed-loop system G+K.

Where G is a system with structured uncertainty A, and K is controller to



be designed. Let M denote the closed-loop system transfer function (G+K),i.e,
and w and z are the noise and error signals, respectively. Two main essential

ideas in robust H*-control theory are:
Robust Stability: (M + A),_o, ,—o is internally stable.

Robust Performance: Let T(M,A) be the transfer function of the closed-

loop system (M + A). It is required that

o el
p
ol

= [|T(M; A)floo <7

for a given desired criterion r depending on the system specification.

To design the robust controller for the system subject to a structured uncer-
tainty, a new measurement (u-synthesis) has been established by Doyle et al.
(6] in 1982. Let A(jw) € C"*™ define the structured uncertainty of the system

with
A = {diag[d1 11, ..., Oglrg, Anyy s A, ] 10, € C L Ay, € CXMY

where

q k
E T, + E n;, =n
=1 =1



For fixed w € R, the structured singular value is formally defined as follows:

1M (Gw)ll, = pa(M(jw))

1
mf{o(AGw)) , Ajw) € A, det(l — M(jw)A(jw)) = 0}

>

If det(1 — M (jw)A(jw)) # 0 for all A(jw) € A, we define | M (jw)]], = 0.

When ¢=1, k=0, rp =n, A ={0l,]0 € C}, then

pa(M(jw)) = p(M(jw)) £ |M(jw)|s;
When ¢ =0, k=1, ny =n, A =C"", then
pa(M(jw)) = a(M(jw)) £ | M (jw)]|oo-

Based on the definition of 1 and the two special cases discussed above, we
have

1M (Gw)lls < 1M Gw)llu < [|M(Gw)lleo

This fact is illustrated by the following example.

Example 1 Let
10 0 1

A =
0

1
2

then [|M][; = 0, [[M]l, =0, [[M]lc = 1.



The sufficient conditions for robust stability and robust performance can

be expressed in terms of structured singular value:
M|, <1, [[T(M,A)|, <7

where [[M]],, = sup|[ M (juw)]|,.

The classical Nevanlinna-Pick interpolation problem is described below:
Let vy, ...,c0, € D, Wy € CY". Find all the analytic function ® from D to
C™™™ satisfies

(I)(Oél) = Wi, Vi = 1, . n

and

[®llc <1, Va €D

We write down the Spectral-Nevanlinna-Pick interpolation problem as fol-
lowing:
Let ay,...,c, € D, W, € C™™. Find all the analytic function F from D to
C*™™ satisfies

F(Ozl) = I/VZ', Vi = 1, . n

and

IF|l, <1, VaeD



In this thesis we consider the situation of lower bound which is the spectral
Nevanlinna-Pick problem. Only n = 2 case is considered and let the spectral
radius with

|A]|s = max{|\| : \ are the eigenvalues of A}

Define the spectral unit disc with

S ={AeC?. |4, <1}

which is 4-dimensional space in C and obviously unbounded, and non-convex,

non-smooth set. For example:

Example 2 Let

L9 19
AIZ ? 7A2: ?
0 3 2 3
1
1 1 3 1
Agé—Al—F(l——)AQ: ?
2 2 )
L3

|As]ls = 2 > 1 thus A3 ¢ ¥, and ¥ is not convex.
To study the interpolation problem in ¥ is quite difficult. Suppose A €

C?*? is similar to a companian matrix A, :



with characteristic polynomial:
det(M — A,) = A2 — s\ +p
Define a set as following:
Definition 1.1 Define the symmetrized bidisc with
L={(s,p): N> =sA+p=0, A\|<1, AeC}
Where s and p are the sum and product of the roots of following equation
M—sA+p=0,|)\<1, AeC

We can take (s,p) to be the coordinate of I'. In other words, we can rewrite

the symmetrized bidisc with
I' = {()\1 + )\2,)\1)\2) : |)\z| <1, A\ € (C, = 1,2}

In fact s and p are the trace and determinant of A, respectively. Thus I is in

the form:
['={(tr(A.),det(A.)) : A, is the companion matrix of A, A € ¥}

Here I' is in C? which is a 2-dimensional space in C. IT' is non-convex but
bounded and compact set. Clearly some of the characteristics of I' are better
than . The following two theorems show that we can study interpolation in
[ instead of ¥ which was established by Agler and Young 1999.

8



Theorem 1.1 [2] Let aq, oo € D be distinct and let Wi, Wy € 3. Sup-
pose that either both or neither of W1, Wy are scalar matrices. The following
statements are equivalent.
(1) There exists an analytic function F': D — X such thatF (o) = W;

i=1, 2.
(2) There exists an analytic function f : D — T such that f(«;) = (trW;, detWy),

i=1, 2.

Theorem 1.2 [2] Let oy, ay € D be distinct and let Wy, Wy € ¥ and
suppose that Wi = ¢l but Wy is not scalar. The following statements are e-
quivalent.
(1) There exists an analytic function F : D — 3 such thatF(a;) = W;

i=1, 2.
(2) There exists an analytic function f : D — T such that f(«;) = (trW;, detW;),

i=1, 2 and fy(on) = cfi(ar).

We write down the general spectral Nevanlinna-Pick interpolation problem
as:
Given oy, as € D, and (s1,p1), (s2,p2) € ', find an analytic function ¢ :

D — T with () = (s(A\),p(\))  satisfies

p(ar) = (s1,p1), plaz) = (s2,2)-

9



In this thesis, we consider the following special flat problem:

Problem 1.1 Givenas € D, ay # 0and (s, p2) € T, find an analytic function

¢ : D =T with p(A) = (s(A),p(N))  satisfies

(0) = (0,0), p(az) = (s2,p2)-

10



2 Mathematical Preliminaries

In this chapter we summarize some mathematical definitions and results which
will be used in these thesis.
Denote C to be the complex space, and D, D, T to be the unit disc, closed

unit disc and unit circle, respectively. Consider the mapping F': D — D with

w
, where w € D

Fw(z) - 1 —wz

which is called Mobius transformation.
Definition 2.1 For w, z € D, define the Poincaré distance with

d(z,w) = |——

1—wz
Definition 2.2 f is an analytic function in a domain € if it has a derivative

at every point in €.

Theorem 2.1 [5] (Schwarz-Pick Lemma) Suppose f : D — D is an analytic

function, then

(1) R <

If the equality holds then f must be a conformal mapping.

11



If f is an analytic function from D to D then the Schwarz-Pick lemma
shows that

d(f(2), f(w)) < d(z,w), Vz, w €D

Definition 2.3 Let {2 be an arbitrary set in C* and taking all analytic func-
tion @ from D to Q. Define the Kobayashi distance between Q(z) and Q(w)
in ) with

Ko(Q(2),Q(w)) = igf d(z,w),Vz,w € D
if the equility holds, @ is called Kobayashi extremal function(K-extremal func-

tion).

Definition 2.4 Let 2 be a domain in C" and taking all analytic function F’

from €2 to D. Define the Carathéodory distance between u and v in €2 with

Ca(u,v) = sup d(F(u), F(v)), Yu, v € Q

F

if the equility holds, F' is called Carathéodory extremal function(C-extremal

function).
By the Schwarz-Pick lemma, for any domain Q in C* we have [7]
Cq < Kq

By Lempert theorem [5] if €2 is convex then the equality hold.

12



Theorem 2.2 [8] (Maximum Modulus Theorem) If f is defined and contin-
uous on a closed-bounded set S and analytic on the interior of S, then the

mazimum of | f(s)| on S is attained on the boundary of S, i.e.

max|f(s)| = max|f(s)|

where 3S denotes the boundary of S.

We use diag[Ay, ..., A, to denote the diagonal matrix with entries Ay, ..., A,,.

Theorem 2.3 [4] Let h be a analytic bounded-valued function on D? and
|h(A1, A2)] < 1, for all (A, N2) € D?if and only if there exists an unitary

matric

A B
Ry =

C D
such that

h(A1, A2) = C diag[A;, A, \o] (I3 — A diag[A, A\, \o]) ' B+ D

for all (A1, \g) € D?.
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3 Main Results

In this chapter we discuss the properties of I', the ideal to construct ¢, and

given a explicit 2D realization.

3.1 Properties of I

In this section we are interesting the geometric properties about I'. First we

are concerned what kinds of s and p in I'.

Theorem 3.1 The following statements are equivalent:
(1) (s,p) €T

(2) |s—3sp| <1—1|p|*> and |s| <2

(3) 2|s—35pl+|s* —4p| <4 s , |p| <1

Proof. Write s = A\ + A9, p = A1 A9 and taking the polar form with

A =11 Ny = 1r0e®2, s = 1€ 4 rpei® ) p = el t02)

, 0<r <1, 0<rn<1

For (1) = (2)

Consider

s —3p| — (1= |p|?) = |rie® + rye® — (rie ™ 4 roe2)p rpe 02| — (1 — 1212

= |rlei91(1 — r%) + T26i02(1 — rf)| - (1- rfr%)
< Jre? (1= r3)| + ree (1 = r7)| = (1 = rir3)

14



= n(l=r) (=)~ (1= 1)
= (]_ — Tng)[Tl + o — (]. + T17"2)]

< 0

Since
(L4+rr)> = (r+mr)’=01-r)1-r3)>0
which implies that ry + o — (1 4+ r179) < 0.
For (2) = (1). By 0 < |s—35p| <1—|p|* = (1 —7r?r2) we have riry; < 1.
Suppose r; > 1 then ry < % <1
0 > [s—35p|—(1—[p]")
= |rie? + rpe® — (rie 0 rge02) py el (1 — p2p2)
= [rie” (1= 713) + e (L= r)[ = (1 = rir3)
> | (1= r3)| = [(=1)ree’® (1 — 17)| = (1 = rir})
= e (L= r3)| + |rod PO =) = (1= rir3)
= [ =)= |r2(l =) = (1 = riry)
= ri(l=r3) —ra(l =) = (1 —riry)
= (1=rre)(ry + 19 — 1 — 1ary)

= (1—=rry)(1—r9)(rp — 1)

15



But 1 —riyry > 0,71 —1 >0, 1 —ry > 0 which is contradiction to 0 >
|s — 5p| — (1 — |p|*). Hence ry < 1. Similarly, 7, < 1. Thus (s,p) € T\

For (1) = (3). Consider

s — 5p| + |5 —4dp| — (4 —|s]?) = 2pre? 4 rye® — (117 4 roe”2) (et 1102

+](r €™ + ryet?)? — 4T1T2€i(01+92)|

+1re?? + rye®2|? — 4

< 20 (1 = )| + 2|ree™2 (1 — r2)| + |rie — ryei®|?
e e — 4

= 2r (1 —73) +2ry(1 —r?) +2r? +2r2 — 4

= 21 =r)(1 =ro)(ri1 +re+2)

< 0

For (3) = (1). Suppose r; >1 and by |p| <1 we have ry < % < 1.

s — ap| + |82 —4p| — (4 — |s]?) = 2|1 +roe™® — (rie7 4 roe ) (ryrpe’ 02|
+](r1€7" + 12€%2)2 — 4 ryetfi+02)]

+|ret + roe®|? — 4

16



= 20r e (1 — r2) + ree2(1 — r)| + |rie? — roet®2|?
e+ rpe®2 |2 — 4

> 2|ry(1—13)| = 2lro(1 — r})| +2r7 + 215 — 4

= 2r(1—7r3) —2ry(ri — 1) +2r7 + 215 — 4

= =20 —1)(ra = 1)(ri +712+2)

v
o

which contradiction to 2|s — 5p| + |s* — 4p| — (4 — |s|?) < 0. Thus r, < 1.

Similarly 7, < 1. Hence (s,p) € " and we complete the proof. n

Define the interior symmetrized bidisc with

nt(T) = {(A+ A2, Md) : M €C, |\ <1}

then (s,p) € int(T) if and only if |s — 5p| < 1 — |p|*.
The following lemma shows that for all line-segments connected (0,0) and

any other points in I' are still lies in ['. Also we can say that there are no holes

inT.

Lemma 3.1 If (s,p) € T, then for any 0 <t < 1, (ts,tp) € T
Proof. Since (s,p) € I'. Write s = A; + Ay, p = A\ and taking the polar

form with \; = re, Ay =192, 0< 7 <1, 0< 1, < 1

17



and s = A\ + do = 1€ + e p = A\ Ay = ryroei@i02),

Claim (ts, tp) satisfy |ts — t25p| < 1 — ¢ |p|°. Consider

‘ts — tZEp‘ =t ‘7”16“91 + roe®? — t(re " 4 7“26’“92)7“17"262(91*92)

=t ‘rlewl +10e™? — trirpe’® — tTlrgewl‘
= t ‘Tlewl (1 — tr2) 4 r9e2 (1 — tT%)‘
<t ‘Tlewl (1-— tr%)‘ +1 ‘T26i92(1 - tr%)‘
= tri(1 —trd) + try(1 — tr?)

= try — t*rrs +try — t2riry

= t(ry + 7)) (1 —trirs)
Hence

ts —t%5p| = (1= £ p|*) < t(ry+r2)(1 = trirs) — (1= £ |p[*)
= t(ry + 1) (1 —triry) — (1 — t2r3rd)

= (1 — t7"17“2)(t7"1 + t?"g — (1 + t?"l’I“Q))

Now (1 —triry) >0, we claim  ¢ry 4+ tro — (1 + tryry) < 0.

18



Consider

(t(r1 4+ 72))* — (L4trirg)® = 2(r} 4 2riry +75) — 1 — 2tryry — 2777}
= % 1202 — 1 — %3 + 2tryro(t — 1)
< tridtry — 1 — s + 2tryr(t — 1)

= —(1—tr})(1 —tr3) + 2trro(t — 1)

Thus t(r; + o) — (1 + tryry) < 0.
And |ts — t*sp| — (1 — t? |p|2) < (1 = tryrg)(try + trg — (1 +tryry)) < 0.

Hence (ts,tp) € I.

19



3.2 Ideal to Construct ¢

Define the function G,, from int(T") to D with[1]:

2p — ws —

Gu(s,p) = , weD

2 —ws

is an analytic function. And we have the following result:

Theorem 3.2 Let (s2,pa) € int(T) then

2Py — WSy

Oint(F)((07 0)7 (527272)) = Sup | |

Proof. By the definition and maximum modulus theorem, we have

B — 2ps — wsy 2Py — wsy
Cin 0,0), (s2, p2)) = sup |——22____| = gup — = su -
) {(0,0): (o2, ) w|s1|1—72’2’2£§§20| \w|s1| 2w |w\=1| 2 — wsy
m
From Theorem 3.2, if the equality holds at |wy| = 1, i.e.
2ps — wyps
Oint(F)((070)7 (52,12)) = d(Guy(0,0), Guy(52,02)) = |%
— WpS2

then G, is a C-extremal function.

Definition 3.1 If Cy,yr)y = Kinyr), Define ¢ is a K-extremal function from D

toT.

20



Now we have the problem: How to construct ¢ ?
Let

2py — wssy

B = Gw(527p2) =

2-@82

Clearly |35 < 1. By the K-extremal property of ¢ we have

Gy o p(ag) = Po.

Since ¢ and G, are analytic functions, so we have G, o ¢ is also an analytic
function from D to D.

From the Nevanlinna-Pick theorem we have the sufficient and necessary
condition for the existence of an analytic function G, 0p satisfies G,,0¢(0) =

0, Gy o p(az) = B which required the Pick matrix

11
>0

1|8

L e

is positive semi-define.
Now, we are concerned the sufficient and necessary conditions of ¢. The

following necessary condition was established by Agler and Young 1999.

Theorem 3.3 [3] Let ay € D and (sq,p2) € int(I), if there exist an analytic

function ¢ : D — int(T) satisfies (0) = (0,0), p(az) = (s2,p2)-

21



Then

2 2 — wss
>0
—o 2(1—p2p2)—wW(52—P2s2) —w(s2—32p2)
2 — WSy e

To construct the sufficient condition of ¢ we consider the following theorem:

Theorem 3.4 Let Cipnyry((0,0), (52,02)) = Kingy((0,0), (52,p2))where C-
extremal function and K-extremal function are Gy, : int(l') — D and ¢ :
D —T, then Gy,0¢:D — D is analytic and

(1) Gy, 0 @ =idp (up to Mobius transformation).

(2) ¢ is isometric transformation from (D, d) to (p(D), Cinyry) -

where (p(D), Cinyry) 45 called totally geodesic disc of int(I).

Proof. Since G, is a C-extremal function, ¢ is a K-extremal function. Clear-
ly G, 0 is an analytic function from D to D. Suppose ¢(0) = (0,0), p(az) =
(S92, p2) then

|as| = d(0, a2) = Kinyry (¢(0), p(a2)) = Kinry((0,0), (s2,2)) = Cingr)((0,0), (s2,p2)) =
d(Guy(0,0), Guy(s2,p2)) = d(0, B2) = | 5o

Hence G, o ¢ is an isometric transformation from (D,d) to (o(D), Cipyry)-

Also Gy, 0 @ = idp . ]
We consider the situation of G, o p(A) = . Let M be a Mdbius trans-
formation such that M(/3;) = ay then
M o Gy, 0 p(az) = M(Bs) = az

22



then M o G, o ¢ is an identity function, without lose any generality. Let

M =1 then ay = (5. In other words, let p(A) = (s(A),p(A)) so we have

A) — wps(A)

Gl (s(0), p(V)) = 24

=A
2 — U_)US()\)
and
p(A) — A
A =2———
S( ) Wy — U_)U)\

where s(-) must be analytic, so p(-) have to satisfies p(w3) = w3, p(-) is ana-

lytic, p(az) = p2, p(0) = 0 and [p(A)| < 1, VA € D.

If Kint(F) = Cint(F) by

2py — ws 2py — ws
Bi=0, fh = T——2,d(0,3) = |Bs] = | 5 ——
2 — WSy 2 — WSy
and by theorem 3.2
2py — wsy

Cin 070 ) ) = _
1) ((0,0), (s2,p2)) ‘i}gl S

If there exists wg € T such that

2ps — woS2 2ps — wsy
== |=suwp|———
2 — WoS2 lw|=1 2 — wS2
Lemma 3.2 Let wy € T and satisfies
2ps — woSa, 2ps — wsy
|277| - Sllp| —
— WoSs wj=1 2 — WSy
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then

|2p2 — WSz, _ |4p; — 53| + 2|52 — 5opo|
2 — Wys2 4 — [s9?
Proof. Claim
|2p2 —wsy | 2|59 — Sopo
2—’[1]52 4—|82|2 4—|82|2
and
2s2 — $opa| |2p2—w52 _ | 2|s2 — 5ap2] _2|(QW—S2)(p252—82)
4— |82|2 2—’U}§2 4— |82|2 4— |82|2 (2-’(1)52)(4- |82|2)
= o,VweT
We have
2 — w3,y 4—|52|2 - 4—|82|2 4 — [s5]?
Hence
|2p2—w052|: |2p2—w52|: |4py — s3] 4 2|52 — Sopy]
2 — ’lD()SQ |w|=1 2 — WSy 4 — |82|2 )

From the lemma 3.2 and theorem 3.4 we have the following identity:

|2p2 — WpSa

2 — WpS2

|:|52|:

s3] + 2|52 — Sopo
4 — |sg]?

|4p2 -

24



3.3 Realization of Symmetrized Bidisc I'

In this section we characterize an analytic function ¢ and give a realization of

@.

Theorem 3.5 Let ay € D, (89,p2) € int(T), as # 0, and if there exists

wy € T satisfies the following

2py — wps2

_ 4py — 55| + 2|52 — 53]
4 — |82|2 .

| | = las

2 — WpS2

Then there exists an analytic function ¢ : D — T such that
(0) = (0,0)

90(&2) = (32,]92)

where (X)) = (s(N), p(N)).

200\ YA = B)
AN)=——-p(\) = ———=—
s(A) 1_BA,p() /A
where a, B,y € C, anda:%"k,kzwgg—QER, 5:—27 v =w5s
with a = 1 — wipetra, b = wipy — v, Po = ﬁ—z; a+bwi € R, k| =|a| —|b].

Proof. First we consider the following identities:

25



(i1d) |af + |8 = [%E] + | = 2| = (1] +[8]) = 1.

To check the interpolation.

YAA =0
1—6A
LadA+ 1Y)
= wotig
a 142\
A+b
= wpAI
b\ +a
2 (1 — w§p0@2)>‘ + (wgpo - CY2)
= WA — 2=
(WP — @2) A + (1 — w3pecra)
_ )\()\ — &2)@% +p0(1 — 612)\)
]_ — @2)\ +]501D§()\ — OZQ)
Thus
p(%) = 2Py = P2
and
— — _ 2p2—wosy R
s(an) = 2]9(@2) - Q2 _ 5 D2 752 _ 5 D2 —22_w38112) = 52w0 pQUfO .
Wy — Wy wo — Wofla Wy — Wy 22 wo — P2t
Since the pole of p(-) is % ¢ D, and
1 — auW? + po — Podpw? a + w2b
p(ud) = gl Q2B o “mooug _ patafd o
1 — aowg + Po — PoaWy a+ wgb

Thus ¢ is an analytic function.
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To proof (M) € I.

4= [s(V)[?

Let u(\) = 1 — BA and k(\) = X\ — B. Check |s(\)] < 2

— 4- P
:|M;PQ—BA—BX+WWM”—MWM5
:|M;Pa—5x_5»+WWF—hMM%

_ |u(i)|2(|ﬁ| — BX = BA+ IR + o] — |alIAP)
> W&Wum—mmuwumuf+mwwmum
= (A0 = D2 + a1 = AR)

> 0

Hence |s(\)| < 2. Check p(A) € T.

— _ YAR(A) yAR(N) 20\ 20 YAk(N)

O R S TRl = St
= o O = AR = 2lalu(DA — kAP
= 0= AP = A= B+ AP) = 2ol = AP)
= (= I = A= B+ A = 2laljA)
= Tl = (= 83— B+ AR = 203 + 21511
= (= WA = (I8 = 55—
> 0
Hence VA € D, p(A) € T, "

27



We given an explicit 2D realization in the following theorem.

Theorem 3.6 Ifp()\) = (13";—’\/\,7}\ 1/1_6_6/\) = (s(A),p(N)) € int(T"), where v, 3, v €

C, lel+[6l=1 ya=a, |y|=1

Let
20op(A1) — s(A1)
h(A, X)) =
( b 2) 2 — )\28()\1)
then there exists a unitary matric
A B
Ry =
C D
where
0 0 0 1
A: a % n —ap ,B: O ,O: —« —CVE __'Yﬁ ,D:O
o5 P b a2 1812
5 _|als B
i 5] |04|2\g| 0_ _O_
such that

h(A1, A2) = C diag[Ai, A, \o] (I3 — A diag[A;, A, \o]) ' B+ D

for all (A, \g) € D?.

Proof.

o 2)\2}7()\1) - S()\l) . )\1[7)\2()\1 - B) — Oé]
h()\h )\2) - 2 — )\28()\1) N 1-— B)q - Oé)\l)\Q
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Let
m 2 mALA) =B\ +Faddg, E2k(A) =AM =8, u2ulA, ) =1-m
h = h(A, Xo)
Consider
— h(A1, Ao)h(A, Ag)
= (1= M) + 0 (1 — e hebm)
= (1= M) + B o = (voh — @) (722 — @)
= (1—|\| )+‘A1 [1—m—m+mm—| Aok +ak+adk—|af’] (Since ya = a)
= (1= )+t W' (1= Ao B = |k|* +1—m =T +mm+akly+adk—|of’]

= (1= )+ B2 = Do) K = Pl (1= 181 = aBhs — aBy)

+(1— |8 — afry — aBry — |af’) + |ad o]

= (1= + 'Aj‘ (1= M) (Bl = aBds = aBds + [aB] [A]*)

(1= Do) (@Bl — lahif? — laBl A + (Al = 5% — B+ 182)]
= (1= M)+ B~ ) o] (- 200) (- 220)

+ (1= o) 1811 = A = )]

Thus
A MR = (- M '| 1|' ] (1 - |“§| )(1—|j—§|w
ME By B
> 0
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Hence |h| < 1.

Let

14 1 1 248 2 A1 1 B

g =g (M, ) = 1 L9 =97 (M, Ae) = ;|3|2(1—m)\1)
Mot (1 - 2)

Then

1—h(A, M), de) = (1= <ghg' > +1— X)) < 62 ¢ >

= <ghg'>—< Mg Mgt >+ <% ¢P > — < Xag’ g’ >

Hence

<MgL Mgt >+ < g gt > +l=<gl gt >+<¢* ¢*>+<hh>

We can find
0 0 0 1
A: o 2 n —af ,B: 0 ,O: _ —CME -8 ,D:O
e B a2 18] ag® (8]
5 ||t B
i 5] |a|2\g| 0_ _0_
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such that

Algl
A B
Azgz
C D
1
And
A0 O
g!
Al 0o A 0
g2
0 0 X
Thus
A1
91
- ]3—A 0
g2
0

31
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)\1 0 0 B
1
g
h = C 0 A\ O + D
92
0 0 X\ | -
- - - 9\ -1
AN 0 0 MO0 0
= C| 0 A O L—A]l 0 A 0 B
0 0 )\2 0 0 )\2

= C’dlag[)\l, )\1, )\2]([3 —A diag[)\l, )\1, )\2])71B + D

for all (A1, \p) € D?.

32



4 Concluding Remarks

In this thesis we discuss the Schwarz lemma on symmetrized bidisc under the

condition Cinyry((0,0), (s2,p2)) = Kinry((0,0), (s2,p2)). We given an analytic

function ¢ and find a realization in the special flat Nevanlinna-Pick problem.
In the future, there are some natural questions suggested by the present

results.

1. How to solve and realize the general spectral Nevanlinna-Pick interpolation
problem?

2.Does the existence of ¢ depend sufficiently on the equality of Carathéodory
and Kobayashi distances?

3.How to use the above results and problems to design the spectral controller

for uncertain system?
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Appendix Geometric Layout of I'

The following two figures are the special case of I'. We can see that they are

non-convex, non-smooth but bounded.
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