染料敏化太陽能電池有製備簡單、材料取得容易等優點,吸引許多研究學者注目及參與。染敏電池基本構造分為:鍍有半導體薄膜的導電基板、染料、電解液及白金電極。本篇主要探討以溶膠-凝膠法製備的二氧化鈦與包覆在氧化鋅奈米線及奈米粒子外的二氧化鈦之不同結構型態,將其製備成半導體薄膜電極後,對光電轉換效率的影響。實驗中藉由穿透式電子顯微鏡、掃描式電子顯微鏡、能量散佈分析儀與X光繞射光譜分析產物,得知氧化鋅@二氧化鈦的核殼結構確實生成,各元素的訊號也很明顯,不過二氧化鈦部分卻沒有晶相。此外還發現,包覆在氧化鋅外的二氧化鈦經過鍛燒後,表面變得較粗糙。無晶相的二氧化鈦仍會吸附染料,並可保護內層的氧化鋅,唯效率仍無法超越以市售P25製備而成的標準電池(3.95 %)。最後,以鍛燒後且表面粗糙的氧化鋅@二氧化鈦奈米粒子與市售P25混合,希望藉由粗糙的核殼粒子增加吸附染料的表面積,促使效率的提升。結果以混合量最少的電池效率最高,為3.69 %。 Owing to several attractive advantages of Dye-sensitized solar cells (DSSCs) such that preparation is simple, and ingredients are accessible, much research has been devoted to improve the efficiency of DSSCs. The major components of a DSSC are the conductive substrate coated with semiconductor film, the photo sensitized dye, liquid electrolyte and a counter electrode. The objective of this research was to investigate the effect of light-to-electric conversion efficiency on substrate modification by sol-gel prepared TiO2, TiO2 coated ZnO nanowires and nanoparticles. The ZnO@TiO2 core-shell structure was confirmed by transmission electron microscope (TEM), scanning electron microscope (SEM), energy-dispersive system (EDS), and X-ray diffractometer (XRD); however, TiO2 shell is amorphous. Furthermore, the calcined TiO2 shell is surface-coarsened. The ZnO-covered amorphous TiO2 still can protect the ZnO surface and has dye-absorbing ability, however, merely the conversion efficiency do not surpass the P25 (3.95 %). Ultimately, the substrate was modified with surface-coarsened ZnO@ TiO2 and P25 mixes, expecting to provide high surface area from surface-coarsened shell as an approach for increasing efficiency by increasing dye-absorbing ability.