English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4217166      Online Users : 525
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/11230


    Title: 等周不等式及其應用
    Other Titles: Isoperimetric Inequality and Its Applications
    Authors: 張雅淳
    Chang, Ya-Chun
    Contributors: 陳文豪
    Chen,Wen-Haw
    東海大學數學系
    Keywords: 等周不等式
    Isoperimetric Inequality
    Date: 2011
    Issue Date: 2011-10-12T15:35:39Z (UTC)
    Abstract: 等周不等式主要是說在平面上任意的封閉區域,由固定周長所圍成的面積,其中以圓圍出來的面積為最大。在此論文中我們介紹傳統微分幾何的等周不等式及多邊形的等周問題,接著從Brunn-Minkowski不等式與超平面的概念將等周不等式推廣到d維度。另一方面,介紹Steiner不等式及平行集合的概念來推導相關的等周不等式。
    The Isoperimetric inequality says that the area of any region in the plane bounded by a curve of a fixed length can never exceed the area of a circle whose boundary has that length. In this paper, we present isoperimetric inequality of classical differential geometry and polygonal isoperimetric problem. Next, we consider isoperimetric problem in Rd using Brunn-Minkowski inequality and the concept of hyperplanes. On the other hand, we consider isoperimetric inequality of Hadiwger using Steiner's Inequality and the concept of the out t-parallel sets.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    099THU00479009-001.pdf841KbAdobe PDF605View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback