English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4202377      Online Users : 726
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/11231


    Title: Gauss-Bonnet 定理及其應用
    Other Titles: Gauss-Bonnet Theorem and Its Applications
    Authors: 曾柏耕
    Zeng, Bo-Geng
    Contributors: 陳文豪
    Chen,Wen-Haw
    東海大學數學系
    Keywords: 高斯曲率
    Gaussian Curvature
    Date: 2011
    Issue Date: 2011-10-12T15:35:40Z (UTC)
    Abstract: Gauss-Bonnet 定理是一個美麗的定理,它把曲面上的曲率和曲面的尤拉特徵數做一個連結。換句話說,Gauss-Bonnet 定理是幾何和拓樸之間的橋樑。在本論文中,我們提出 Gauss-Bonnet 定理的發展及証明,並討論它的一些應用。例如,龐加萊-霍普夫指標定理,毛球定理,和代數基本定理。除此之外,我們還討論 $\mathbb{R}^{3}$ 空間中多面體的離散型 Gauss-Bonnet 定理。
    Gauss Bonnet theorem is beautiful because it relates the curvature of a surface with its Euler characteristic.It links differential geometry with topology.In this paper, we present some developments on the proof and some applications of Gauss-Bonnet theorem.For example, the Poincar\'{e}-Hopf index theorem, the hairy ball theorem, and the fundamental theorem of algebra.Moreover, we discuss the discrete Gauss-Bonnet theorem about a convex polyhedron in $\mathbb{R}^{3}$.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    099THU00479007-001.pdf1529KbAdobe PDF1495View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback