English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4243166      Online Users : 701
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/11508


    Title: 黎曼流形上之高階固有值的研究(II)
    Other Titles: Study on the Higher Order Eigenvalues in Riemannian Manifolds(II)
    Authors: 陳文豪
    Chen, Wen-Hao
    Contributors: 行政院國家科學委員會
    東海大學數學系
    Keywords: 高階固有值;傅立葉轉換;測地方程式;黎曼流形
    Higher eigenvalues;Fourier transform;Geodesic equation Riemannian manifolds
    Date: 2004
    Issue Date: 2011-11-07T12:24:43Z (UTC)
    Abstract: 本計畫以研究黎曼流形上的 Dirichlet 固有值問題,特別是關於高階固有值的估計問題,以及相關的應用為主要研究對象。我們藉由探討 P.Li 教授與丘成桐教授對於歐式空間中有界區域的 Dirichlet 問題與高階固有值的估計所採用的方法,研究其推廣至一般黎曼流形的可能性。同時,我們也討論有關黎曼流行上的隨機測地方程式的相關問題,利用 S.Helgason 教授對於對稱空間上之傅立葉轉換的相關探討,我們給出這類流形上之隨機測地方程式的初步結果。
    This project focuses on the investigations of the Dirichlet eigenvalue problem in Riemannian manifolds, especially for the estimate of higher eigenvalues of Laplace operator and its applivations. By the methods in P.Li and Yau?? s work about studying the Dirichlet problem and the estimate of higher eigenvalues in a bounded domain of Euclidean space, we investigate the possibility of extending their work to general Riemannian manifolds. Meanwhile, we also discuss the related problems about the stochastic geodesic on Riemannian manifolds. By S.Helgason?? s results about Fourier transforms on symmetric spaces, we give partial results about the stochastic geodesic equations on these manifolds.
    Relation: 研究編號:NSC93-2115-M029-007
    研究期間:2004-08 ~ 2005-07
    Appears in Collections:[應用數學系所] 國科會研究報告

    Files in This Item:

    File SizeFormat
    932115M029.pdf215KbAdobe PDF260View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback