Tunghai University Institutional Repository:Item 310901/22018
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 21921/27947 (78%)
造访人次 : 4242640      在线人数 : 797
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/22018


    题名: Time series forecasting by a seasonal support vector regression model
    作者: Pai, P.-F.a , Lin, K.-P.b , Lin, C.-S.c , Chang, P.-T.c
    贡献者: Department of Industrial Engineering and Enterprise Information, Tunghai University
    关键词: Forecast;Seasonal autoregressive integrated moving average;Seasonal time series;Support vector regression
    日期: 2010
    上传时间: 2013-05-15T09:09:20Z (UTC)
    摘要: The support vector regression (SVR) model is a novel forecasting approach and has been successfully used to solve time series problems. However, the applications of SVR models in a seasonal time series forecasting has not been widely investigated. This study aims at developing a seasonal support vector regression (SSVR) model to forecast seasonal time series data. Seasonal factors and trends are utilized in the SSVR model to perform forecasts. Furthermore, hybrid genetic algorithms and tabu search (GA/TS) algorithms are applied in order to select three parameters of SSVR models. In this study, two other forecasting models, autoregressive integrated moving average (SARIMA) and SVR are employed for forecasting the same data sets. Empirical results indicate that the SSVR outperforms both SVR and SARIMA models in terms of forecasting accuracy. Thus, the SSVR model is an effective method for seasonal time series forecasting. ? 2009 Elsevier Ltd. All rights reserved.
    關聯: Expert Systems with Applications
    Volume 37, Issue 6, June 2010, Pages 4261-4265
    显示于类别:[工業工程與經營資訊學系所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML210检视/开启


    在THUIR中所有的数据项都受到原著作权保护.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈