Tunghai University Institutional Repository:Item 310901/22018
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 21921/27947 (78%)
造訪人次 : 4247361      線上人數 : 470
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/22018


    題名: Time series forecasting by a seasonal support vector regression model
    作者: Pai, P.-F.a , Lin, K.-P.b , Lin, C.-S.c , Chang, P.-T.c
    貢獻者: Department of Industrial Engineering and Enterprise Information, Tunghai University
    關鍵詞: Forecast;Seasonal autoregressive integrated moving average;Seasonal time series;Support vector regression
    日期: 2010
    上傳時間: 2013-05-15T09:09:20Z (UTC)
    摘要: The support vector regression (SVR) model is a novel forecasting approach and has been successfully used to solve time series problems. However, the applications of SVR models in a seasonal time series forecasting has not been widely investigated. This study aims at developing a seasonal support vector regression (SSVR) model to forecast seasonal time series data. Seasonal factors and trends are utilized in the SSVR model to perform forecasts. Furthermore, hybrid genetic algorithms and tabu search (GA/TS) algorithms are applied in order to select three parameters of SSVR models. In this study, two other forecasting models, autoregressive integrated moving average (SARIMA) and SVR are employed for forecasting the same data sets. Empirical results indicate that the SSVR outperforms both SVR and SARIMA models in terms of forecasting accuracy. Thus, the SSVR model is an effective method for seasonal time series forecasting. ? 2009 Elsevier Ltd. All rights reserved.
    關聯: Expert Systems with Applications
    Volume 37, Issue 6, June 2010, Pages 4261-4265
    顯示於類別:[工業工程與經營資訊學系所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML211檢視/開啟


    在THUIR中所有的資料項目都受到原著作權保護.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋