Tunghai University Institutional Repository:Item 310901/22432
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 21921/27947 (78%)
造访人次 : 4247833      在线人数 : 385
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/22432


    题名: Thermal, dynamic-mechanical, and dielectric properties of surfactant intercalated graphite oxide filled maleated polypropylene nanocomposites
    作者: Wang, Y., Tsai, H.-B.
    贡献者: Department of Chemical and Materials Engineering, Tunghai University
    关键词: graphite oxide;intercalation;nanocomposite;polypropylene
    日期: 2012
    上传时间: 2013-05-21T09:06:17Z (UTC)
    摘要: Graphite oxide (GO) and amine surfactant intercalated graphite oxide (GOS) filled maleated polypropylene (PPgMA) nanocomposites were prepared directly by solution blending. In this study, the effects of the surfactant intercalation on the crystalline structure, thermo-mechanical, and dielectric properties of PPgMA/GO and GOS composites are reported. Wide-angle X-ray diffraction exhibited a lower intensity diffraction peak of the monoclinic (α) phase of PPgMA for PPgMA/GOS composites compared with the unfilled sample. Differential scanning calorimetry exhibited a single characteristic melting peak of monoclinic (α) crystalline phase. The incorporation of GOS hardly showed any change in Tm. However, the significant decrease in the melting enthalpy of PPgMA/GOS composite, which was lower than that of GO filled PPgMA, demonstrated the high degree of dispersion of the GOS flakes in the PPgMA matrix. Dynamical mechanical analysis indicated that incorporation of GO or GOS into PPgMA increased both the storage modulus and the glass transition temperature, due to the hydrogen bonding between GO and the maleic anhydride group of PPgMA. Dielectric analyzer showed significant increase in both dielectric permittivity and dielectric loss at high temperature regimes in the GOS nanocomposites. The finely dispersed GOS in the PPgMA matrix manifested the interfacial polarization, which gave rise to much greater ε' and ε'' than that of PPgMA/GO hybrid. ? 2011 Wiley Periodicals, Inc.
    關聯: Journal of Applied Polymer Science 123 (5) , pp. 3154-3163
    显示于类别:[化學系所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML158检视/开启


    在THUIR中所有的数据项都受到原著作权保护.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈