English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4199706      Online Users : 603
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/24665


    Title: Improving project-profit prediction using a two-stage forecasting system
    Authors: Chang, P.-T.;Hung, L.-T.;Pai, P.-F.;Lin, K.-P.
    Contributors: Department of Industrial Engineering and Enterprise information, Tunghai University
    Keywords: Fuzzy c-means;Kernel fuzzy c-means;Least-squares support vector regression;Project-profit
    Date: 2013
    Issue Date: 2014-05-30T01:53:55Z (UTC)
    Abstract: Accurate project-profit prediction is a crucial issue because it can provide an early feasibility estimate for the project. In order to achieve accurate project-profit prediction, this study developed a novel two-stage forecasting system. In stage one, the proposed forecasting system adopts fuzzy clustering technology, fuzzy c-means (FCM) and kernel fuzzy c-means (KFCM), for the correct grouping of different projects. In stage two, least-squares support vector regression (LSSVR) technology is employed for forecasting the project-profit in different project groups, respectively. Moreover, genetic algorithms (GA) were simultaneously used to select the parameters of the LSSVR. The project data come from a real enterprise in Taiwan. In this study, some forecasting methodologies are also compared, for instance Generalized Regression Neural Network (GRNN), Radial Basis Function Neural Networks (RBFNN), and Back Propagation Neural Network (BPNN), to predict project-profit in this real case. Empirical results indicate that the two-stage forecasting system (FCM+LSSVR and KFCM+LSSVR) has superior performance in terms of forecasting accuracy, compared to other methods. Furthermore, in observing the results of the two-stage forecasting system, it can be seen that FCM+LSSVR can achieve superior performance, and KFCM+LSSVR can achieve consistently good performance. Therefore, based on the empirical results, the two-stage forecasting system was verified to efficiently provide credible predictions for project-profit forecasting. ? 2013 Elsevier Ltd. All rights reserved.
    Relation: Computers and Industrial Engineering,Vol.66,Issue4,P.800-807
    Appears in Collections:[工業工程與經營資訊學系所] 期刊論文

    Files in This Item:

    There are no files associated with this item.



    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback