English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4201749      Online Users : 135
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/2661


    Title: 基於LibSVM之異常偵測模擬分析
    Other Titles: Simulation Analysis for Anomaly Detection Using LibSVM
    Authors: 何嘉瀚
    Ho, Chia-Han
    Contributors: 林祝興
    Lin, Chu-Hsing
    東海大學資訊工程學系
    Keywords: 入侵偵測;異常偵測;支援向量機
    Anomaly Detection;LibSVM;Intrusion Detection System;Support Vector Machine;One-class SVM
    Date: 2008
    Issue Date: 2011-03-23T05:56:31Z (UTC)
    Abstract: 入侵偵測是一種對網路傳輸進行及時監視,在發現可疑行為時發出警報,或是採取主動反應措施以降低或避免系統傷害之網路安全技術。依照監測方式之不同,可以將入侵偵測技術分為異常偵測和誤用偵測二類。異常偵測則是對使用者或網路流量先建立一個「正常」的行為,再對通過的封包去做比對,假如超過正常行為的門檻值就是視為異常。近年來,異常偵測時常運用到機器學習理論作為建立 「正常」行為的一個學習機制。本論文中,使用到了一個被廣泛運用的學習技術--支援向量機,作為本異常偵測模擬實驗之學習技術,而在支援向量機工具的使用則是選用臺灣大學林智仁教授所開發的LibSVM。世界上有相當多關於這方面的研究都是使用到支援向量機,搭配額外的演算法如基因演算法或是類神經網路或是額外的核函數以達到高的偵測率。但在本論文的研究中,不需要搭配外來的幫助,即可以達到良好的偵測率,以及低的誤判率。也降低了額外所需的計算量。
    Intrusion detection is the means to identify the intrusive behaviors and provides useful information to intruded systems to respond fast and to avoid or reduce damages. In recent years, learning machine technology is often used as a detection method in anomaly detection. In this thesis, we use support vector machine as a learning method for anomaly detection, and use LibSVM as the support vector machine tool. By using this tool, we get rid of numerous and complex operation and do not have to use external tools for finding parameters as need by using other algorithms such as the genetic algorithm. Experimental results show that high average detection rates and low average false positive rates in anomaly detection are achieved by our proposed approach.
    Appears in Collections:[資訊工程學系所] 碩士論文

    Files in This Item:

    File SizeFormat
    096THU00394025-001.pdf135KbAdobe PDF278View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback