English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 21921/27947 (78%)
造訪人次 : 4237809      線上人數 : 346
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://140.128.103.80:8080/handle/310901/2665


    題名: 利用分水嶺演算法應用於抗核抗體之切割與分類
    其他題名: Outline Detection for the HEp-2 Cell in Indirect immunofluorescence Images Using Watershed Segmentation and Classification
    作者: 鐘家偉
    Chung, Chia-Wei
    貢獻者: 黃育仁
    Huang, Yu-Len
    東海大學資訊工程學系
    關鍵詞: 分水嶺演算法;影像切割;抗核抗體;間接免疫螢光法;學習向量機
    watershed transformation;image segmentation;antinuclear autoantibodies;immunofluorescence pattern;learning vector quantization
    日期: 2008
    上傳時間: 2011-03-23T05:56:35Z (UTC)
    摘要: 所謂抗核抗體(ANA)就是血中的抗體對抗細胞核內的抗原,意即對抗自己細胞核內抗原的自體抗體。這些自體抗體的存在,與各種?同的免疫疾病息息相關,對於診斷?同的風濕性疾病具有非常重要的意義,ANA的檢查方法為一種間接免疫螢光法,此為?用一種培養細胞HEp-2的細胞株做為酵素基質,此細胞之細胞核大,?於觀看,是目前使用最廣的一種ANA檢驗方法,此方法迅速、簡單且敏感性高,幾乎取代過去所用?瘡細胞檢查法(LE cell),所以?床上已成為診斷免疫風濕性疾病常?之檢查。關於近年來間接抗體螢光染色HEp-2細胞的研究主要都是著重於對這些細胞作分類的研究,因為要分別這些抗核抗體不同種類的樣式需要有受過專業的訓練或是有經驗的專家和醫生才能夠分辨的出來,而且這種專家或是醫生其實人數是少量的,所以目標是想發展一個能夠幫助醫生作診斷的系統,也就是能夠自動對這些抗核抗體先作切割,然後再對這些切割出來的抗核抗體作正確的分類的系統。本篇論文的切割方法是一個改良式的兩階層的分水嶺演算法,而這個方法總共對2305個抗核抗體細胞作實驗(包含456 diffuse patterns, 417 peripheral patterns, 719 coarse speckled patterns, 55 fine speckled patterns, 517discrete speckled patterns and 141 nucleolar patterns),而這些細胞是由44張間接抗體螢光染色影像上取得的,接下來再利用Learning Vector Quantization (LVQ) 和51個特徵對1036個切割出來的細胞做分類。
    Rationale and Objectives: Indirect immunofluorescence (IIF) with HEp-2 cells has been used to detect antinuclear autoantibodies (ANA) for diagnosing systemic autoimmune diseases. An automatic inspection system for the ANA testing can be partitioned into HEp-2 cell detection, fluorescence pattern classification and computer aided diagnosis phases. The aim of this study is to develop an automatic segmentation scheme to sketch outlines of fluorescence cells for HEp-2 cell detection in the IIF images and fluorescence pattern classification.Materials and Methods: In the proposed a two-staged segmentation method, the similarity-based watershed algorithm with marker techniques was performed to obtain the contour of each fluorescence cell. This study evaluated 2305 autoantibody fluorescence patterns from 44 IIF images that can be divided into six pattern categories (including 456 diffuse patterns, 417 peripheral patterns, 719 coarse speckled patterns, 55 fine speckled patterns, 517discrete speckled patterns and 141 nucleolar patterns). And fluorescence pattern classification method utilized learning vector quantization (LVQ) and 51 features to classify. It total experiment on 1036 cells (782 training data and 254 testing data). Results: The sensitivity of the six patterns except for discrete speckled pattern was 86.8%, other patterns are among 94.7% to 100%. The total average sensitivity was 94.7%. In the classification simulation, the total average correct rate is 0.803. Conclusions: This study proposed an automatic segmentation method for detecting outlines of fluorescence cells in IIF images and then the proposed classification method is performed to identify the different fluorescence patterns. The segmentation and classification result is satisfying for clinical applications.
    顯示於類別:[資訊工程學系所] 碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    096THU00394027-001.pdf1492KbAdobe PDF179檢視/開啟


    在THUIR中所有的資料項目都受到原著作權保護.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋