Tunghai University Institutional Repository:Item 310901/29230
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4247210      Online Users : 474
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/29230


    Title: 關於正則圖上反魔方標號 缺數問題之研究
    Other Titles: On the Deficiency Problems of Antimagic Labeling for Regular Graphs
    Authors: 王奕璿
    WANG,YI- XUN
    Contributors: 王道明
    WANG,TAO-MING
    應用數學系
    Keywords: Antimagic
    Date: 2016
    Issue Date: 2017-07-17T06:02:11Z (UTC)
    Abstract: R. Bodendiek 與 G. Walther 於 1993 年提出了 (a, d)-antimagic labeling 的概念,令G = (V, E) 為一個有 p 個點和 q 個邊且沒有孤立點的有限簡單圖,定義一個bijection 的函數 f : E → {1, 2, · · · , q},將邊做 1 ? q 的編號,則導出頂點所有入射邊的編號和 f+(u) = Σ{f(uv) : uv ? E(G)},使得 f+ : V → N,且形成一首項為 a、公差為 d 的等差數列,則我們稱其為 (a, d)-antimagic labeling。如果圖G 有 (a, d)-antimagic labeling,則我們稱 G 是 (a, d)-antimagic。V. Swaminathan與 P. Jeyanthi (SUPER VERTEX-MAGIC LABELING) 於 2003 年證實了 mCn 是 (a,1)-antimagic,若且唯若 m 與 n 皆為奇數。在此篇文章中我們提出並定義了 (a,1)-antimagic deficiency(缺數) 的概念,放寬了 (a, d)-antimagic labeling 並推測如何使其在最小放寬程度能成為 (a, 1)-antimagic。此外也證實了 2C4n 缺數為 1 時是 (a, 1)-antimagic。
    Appears in Collections:[Department of Applied Mathematics] Theses and Dissertations

    Files in This Item:

    File Description SizeFormat
    104THU00507007-001.pdf1233KbAdobe PDF467View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback