English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4198091      Online Users : 824
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31831


    Title: 雲端共存攻擊多目標回應策略機器學習模式之研究
    Other Titles: Machine Learning Modelling for Multi-objective Response Strategy to Co-resident Attacks in Cloud Computing
    Authors: 呂曉雯
    Lu Hsiao-Wen
    Contributors: 林祝興
    Lin Chu-Hsing
    資訊工程學系
    Keywords: 雲端計算;共存攻擊;機器學習;雲端入侵回應系統
    Cloud Computing;Co-resident Attack;Machine Learning;Cloud Intrusion Response System
    Date: 2019
    Issue Date: 2019-12-16T06:50:25Z (UTC)
    Abstract: 雲端計算可以透過虛擬化技術共享軟硬體資源,但是使用者在使用虛擬化平台時可能會面臨額外的的安全威脅。共存攻擊是指攻擊者利用共享基礎設備的特性,來攻擊共存在同一實體機上的其他虛擬機。2017年Abazari等人提出了雲端共存攻擊多目標回應系統,考量到虛擬機共存時間,以最小成本和最小威脅為目標來回應共存攻擊。但我們發現實際上該系統的回應時間過長。因此在本論文中,我們使用機器學習來訓練入侵回應系統,我們使用Ridge Regression演算法,並進行一系列實驗證明模型的效果,實驗中也比較了我們的模型和Abazari等人的模型。實驗結果顯示,我們的模型具有 2000 倍加速比的效率提升,同時獲得 87.9% 高準確度的解答,在回應策略與時間效能取得平衡。
    With cloud computing, we can share hardware and software resources through virtualization technology, while the users may face additional security threats when using virtualization platforms. Co-resident attack is one security problem when an attacker exploits the characteristics of a shared infrastructure and attacks other virtual machines co-located on the same physical machine. In 2017, Abazari et al. proposed a multi-objective response system to against co-resident attacks in cloud environment, considering the co-resident time of virtual machines, and responding to the attacks with the goal of minimum cost and minimum threat. Howeverwe found that the response time of their proposed system was actually too long for real-time applications.In this thesis, we proposed to use machine learning to train the intrusion response system. We use the Ridge Regression algorithm and perform a series of experiments to prove the effect of the proposed model. In the experiments, we also compared our model with that of the Abazari’s. From the experimental results, we showed that our model can obtain a solution with efficiency improvement of 2000x speedup and 87.9% of high accuracy.
    Appears in Collections:[資訊工程學系所] 碩士論文

    Files in This Item:

    File Description SizeFormat
    107THU00394011-003.pdf1381KbAdobe PDF351View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback