English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4197312      Online Users : 100
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31855


    Title: 應用於傳統製造工廠的智能報工系統
    Other Titles: An Intelligent Shop Floor Tracking System for Machinery Manufacturing
    Authors: 林書凡
    Contributors: 周忠信
    JWO, JUNG-SING
    數位創新碩士學位學程
    Keywords: 大數據;雲計算;移動計算;即時報工;智慧製造
    Shop floor tracking system;Big Data;Cloud computing;Mobile computing;Smart manufacturing
    Date: 2019
    Issue Date: 2019-12-16T06:57:14Z (UTC)
    Abstract: 數位科技的快速發展正促成今日的生產方式往智慧製造推進。然而傳統機械業的生產車間,特別是機械製造廠,受限於生產現場高溫、高噪、骯髒、危險與辛苦的3K現象,發展智慧製造顯然是一大挑戰。而如何即時取得製造相關數據,則是必須面對的第一步。透過移動計算、雲計算與自動辨識等技術,本論文發展出一個輕量、易用、低成本、高移動性的現場即時報工系統。包括現場人員、倉管人員、品管人員,皆直接使用移動裝置,隨時隨地將生產資訊,包括機台、人員、工件、製令等數據蒐集至雲端。管理人員亦可透過移動裝置隨時取得生產戰情資訊,包括機台狀態、稼動率、訂單進度等。本論文成果目前正於台灣某鍛造廠實現中,所蒐集之現場即時數據,未來更可作為該廠智慧製造大數據使用。
    The advance of digital technology is driving today's manufacturing to become smarter. However, the environment of the traditional plants, especially forging plants, is hot, noisy, dirty, and quite dangerous and therefore it is really a challenge to deploy a digital solution in such conditions. In order to improve the above addressed constraints, based on mobile devices and cloud computing a real-time shop-floor tracking system for machinery manufacturing is proposed. The newly designed system is a lightweight, easy-to-use, and low-cost solution especially for forging plants. It collects all production related information, such as machine ID, workers, manufacturing orders, and quantities anytime, anywhere through mobile phones or pads. With all this real-time data, a manufacturing war room service is also provided. Managers can identify the status of each machine and find out the overall equipment effectiveness. Managers can also track the status of each order and yield rate. The results of this thesis are currently being implemented in a forging factory in Taiwan. The collected data of the plant can be further used for big data analysis.
    Appears in Collections:[數位創新碩士學位學程] 碩士論文

    Files in This Item:

    File Description SizeFormat
    107THU00620003-001.pdf5898KbAdobe PDF27View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback