English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4198071      Online Users : 803
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/31876


    Title: 關於河內圖形與相關(2,3)-圖形之零和流數研究
    Other Titles: On Zero-Sum Flow Numbers of Hanoi Graphs and Related (2,3)-Graphs
    Authors: 劉人豪
    LIU, REN-HAO
    Contributors: 王道明
    WANG, TAO-MING
    應用數學系
    Keywords: 零和流;零和流數;(2,3)-圖形;河內圖形;零和k-流
    zero-sum flow;zero-sum flow number;(2,3)-graph;Hanoi Graphs;zero-sum k-flow
    Date: 2019
    Issue Date: 2019-12-16T07:04:34Z (UTC)
    Abstract: 設G為一無向圖,若在G的每一邊上指定非零整數,使得在每一頂點之所有鄰接邊的整數和為零,稱此圖形G具有零和流(Zero-sum flow)。若邊上之指定整數均來自集合{±1,±2, ...,±(k− 1)},則稱其為一零和k-流(Zero-sum k-flow)。進一步可定義圖G之零和流數(Zero-sum flow number),使得G具有零和k-流之最小值k。本論文主要探討河內圖形以及相關的(2, 3)-圖形之零和流與零和流數,並且提出未來可繼續努力的方向。
    For an undirected graph G, let E(v) denote the set of edges incident on a vertex v ∈ V(G). A zero-sum flow is an assignment of non-zero integers to the edges such that the sum of the values v of all edges incident with each vertex is zero.A zero-sum k-flow is a zero-sum flow whose values are integers with absolute value less than k.This paper study on zero-sum flow numbers of hanoi graphs and related (2,3)-Graphs. Open problems are listed in the last section.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File Description SizeFormat
    107THU00507001-001.pdf7821KbAdobe PDF135View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback