企業在快速交貨的時間壓縮下,企業與伙伴間的關係變得更加密切,使得供應鏈或運籌管理有日益盛行的趨勢。配銷倉儲與區域零售商的存貨政策,攸關整體供應鏈的營運績效。故本篇論文的目的是探討:在穩定-巢狀存貨政策下,如何協調集中倉儲對多個區域零售商的產品補貨時程及制定倉儲的配送批量,使供應鏈整體的平均總成本達到最小。目前,在此研究領域,尚未有學者提出一有效的解法,其能保證求得該問題的全面最佳解。因此,本研究針對此問題,剖析其最佳成本函數的最佳解結構。本研究並利用此最佳成本曲線結構的特性,推導出許多重要的理論結果,並依此理論結果設計一套有效率的最佳解搜尋演算法。再以隨機產生的實驗數據驗證之後,證實本研究的搜尋演算法不僅比文獻中其他的解法更迅速有效率,而且可以保證求得該問題的全域最佳解。 This study aims at optimally coordinating inventory among all the partners in a supply chain system with a central warehouse and multiple local retailers so as to minimize the average total costs. After reviewing the literature, we found no study proposes an efficient solution approach that guarantees to secure an optimal solution for the one-warehouse multi-retailer lot-sizing problem. The solution approaches in the literature share a common problem, namely, they do not have insights into the optimality structure of the problem. Therefore, this study first focuses on performing a full theoretical analysis on the optimality structure. Then, by utilizing our theoretical results, we derive an effective search algorithm that is able to obtain an optimal solution for the one-warehouse multi-retailer lot-sizing problem under stationary-nested policy. Based on our random experiments, we demonstrate that our search algorithm out-performs the other heuristics.