English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4237978      Online Users : 427
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/5086


    Title: 等位函數在計算流體力學之應用
    Other Titles: On the Level Set Method and Its Application to Fluids Simulation
    Authors: 鄭淑燕
    Contributors: 李天佑
    Daniel Lee
    東海大學數學系
    Keywords: 不可壓流;等位函數
    incompressible flow;level set
    Date: 2004
    Issue Date: 2011-05-19T07:39:57Z (UTC)
    Abstract: 等位函數法是用來處理不可壓縮二相流界面問題的數值方法,而等位函數法把這個界面定義為一個平滑函數的零等位面。 由於等位函數為一平滑函數,為了維持等位函數的特性,將兩流體交界面維持在一微小寬度,密度與黏滯係數也會隨著等位函數而改變。 本篇論文主要以等位函數來處理不可壓縮二相流的界面變化,在求解三維Navier-Stokes方程式的部分,以有限差分法來處理。 由於為二相流,則必須考慮到密度、黏滯係數及雷諾數的的給定方式。數值實驗包括三維水波盪漾問題、液滴落地及落水等問題。
    A numerical method using the level set method for solving incompressible two-phase flow with moving interface is discussed in this thesis. The interface is identified as the zero level set of a smooth function. We maintain the level set function as a smooth distance function allowing us to give the interface a thickness fixed in time. Density and viscosity both depend on the level set function being a distance function. In this thesis, we compute incompressible air-water flows using the level set method and solve the three-dimensional incompressible Navier-Stokes equations by the finite difference method. In addition, we consider the density and viscosity. We used a long rectangular lake and a water drop to fall into the ground or fall to the water on three-dimensional as model to observe a change in the interface.
    Appears in Collections:[應用數學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    092THU00479005-001.pdf6162KbAdobe PDF119View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback