English  |  正體中文  |  简体中文  |  Items with full text/Total items : 21921/27947 (78%)
Visitors : 4250774      Online Users : 433
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://140.128.103.80:8080/handle/310901/5427


    Title: 具遺失訊息下多變量混合常態模型之快速監督學習
    Other Titles: On fast supervised learning for normal mixture models with missing information
    Authors: 何秀榮
    Ho, Hsiu J
    Contributors: 林宗儀
    Lin, Tsung I.
    東海大學統計學系
    Keywords: Bayesian classifier;Data augmentation;EM algorithm;Incomplete features;Rao-Blackwellization
    Date: 2005
    Issue Date: 2011-05-19T08:15:43Z (UTC)
    Abstract: 用遺失值的資料配適混合模型(mixtrue models)是一個重要的研究課題。在本文中,在假設隨機遺失訊息?missing at random?(MAR)情況下,我們引進輔助的指標矩陣來處理多變量混合常態模型。我們發展一個新結構的EM演算法可大幅地節省運算時間並且有許多應用,例如:密度估計、分類與遺失值的預測。對於遺失資料的多重設算(multiple impuation),我們利用吉氏抽樣法(Gibbs sampler)提出一個新的資料擴增(data augmentation)演算法。在考慮不同的人為遺失比例下,我們用一些實例來闡述所提出的方法。
    It is an important research issue to deal with mixture models when missing values occur in the data. In this paper, computational strategies using auxiliary indicator matrices are introduced for handling mixtures of multivariate normal distributions in a more efficient manner, assuming that patterns of missingness are arbitrary and missing at random. We develop a novelly structured EM algorithm which can dramatically save computation time and be exploited in many applications, such as density estimation, supervised clustering and prediction of missing values. In the aspect of multiple imputations for missing data, we also offer a data augmentation scheme using the Gibbs sampler. Our proposed methodologies are illustrated through some real data sets with varying proportions of missing values.
    Appears in Collections:[統計學系所] 碩博士論文

    Files in This Item:

    File SizeFormat
    093THU00337006-001.pdf410KbAdobe PDF154View/Open


    All items in THUIR are protected by copyright, with all rights reserved.


    本網站之東海大學機構典藏數位內容,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback